

Chelsio Unified Wire for Linux i

Chelsio Unified Wire for Linux ii

This document and related products are distributed under licenses restricting their use, copying, distribution,

and reverse-engineering.

No part of this document may be reproduced in any form or by any means without prior written permission

by Chelsio Communications.

All third-party trademarks are copyright of their respective owners.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE USE OF THE SOFTWARE AND ANY ASSOCIATED MATERIALS (COLLECTIVELY THE

“SOFTWARE”) IS SUBJECT TO THE SOFTWARE LICENSE TERMS OF CHELSIO COMMUNICATIONS,

INC.

Sales

For all sales inquiries, send an email to sales@chelsio.com

Support

For all support related questions, send an email to support@chelsio.com

Copyright © 2024. Chelsio Communications. All Rights Reserved.

Chelsio ® is a registered trademark of Chelsio Communications.

All other marks and names mentioned herein may be trademarks of their respective companies.

Chelsio Communications (Headquarters)

735 N Pastoria Avenue,

Sunnyvale, CA 94085

U.S.A

www.chelsio.com

Tel: 408.962.3600

Fax: 408.962.3661

Chelsio (India) Private Limited

Subramanya Arcade, Floor 3, Tower B

No. 12, Bannerghatta Road,

Bangalore-560029

Karnataka,

India

Tel: +91-80-4039-6800

mailto:sales@chelsio.com
mailto:support@chelsio.com
http://www.chelsio.com/

Chelsio Unified Wire for Linux iii

Document History

Version Revision Date

1.5.7 01/31/2022

1.5.8 03/15/2022

1.5.9 07/29/2022

1.6.0 12/02/2022

1.6.1 04/07/2023

1.6.2 08/04/2023

1.6.3 01/22/2024

1.6.4 04/30/2024

1.6.5 11/22/2024

Chelsio Unified Wire for Linux iv

TABLE OF CONTENTS

I. CHELSIO UNIFIED WIRE 14

 Introduction 15

1.1. Features 15

1.2. Hardware Requirements 16

1.3. Software Requirements 16

1.4. Package Contents 16

 Hardware Installation 19

 Software/Driver Installation 21

3.1. Pre-requisites 21

3.2. Mounting debugfs 22

3.3. Installing Chelsio Unified Wire from source 22

3.4. Installing Chelsio Unified Wire from RPM 28

3.5. Firmware Update 30

 Configuring Chelsio Network Interfaces 32

4.1. Configuring Adapters 32

4.2. Configuring network-scripts 36

4.3. Creating network-scripts 36

4.4. Configuring IPv6 37

4.5. Checking Link 37

 Performance Tuning 38

5.1. Generic 38

5.2. Throughput 38

5.3. Latency 38

 Software/Driver Update 40

 Software/Driver Uninstallation 41

7.1. Uninstalling Chelsio Unified Wire from source 41

7.2. Uninstalling Chelsio Unified Wire from RPM 44

II. NETWORK (NIC/TOE) 46

 Introduction 47

1.1. Hardware Requirements 47

1.2. Software Requirements 48

 Software/Driver Installation 49

 Software/Driver Loading 50

3.1. Loading in NIC mode (without full offload support) 50

3.2. Loading in TOE mode (with full offload support) 50

 Software/Driver Configuration 51

4.1. Enabling TCP Offload 51

4.2. Enabling Busy waiting 51

4.3. Precision Time Protocol (PTP) 52

Chelsio Unified Wire for Linux v

4.4. VXLAN Offload 54

4.5. HMA 56

4.6. Performance Tuning 56

 Software/Driver Unloading 61

5.1. Unloading the NIC Driver 61

5.2. Unloading the TOE Driver 61

III. VIRTUAL FUNCTION NETWORK (VNIC) 62

 Introduction 63

1.1. Hardware Requirements 63

1.2. Software Requirements 64

 Software/Driver Installation 65

2.1. Pre-requisites 65

2.2. Installation 65

 Software/Driver Loading 66

3.1. Instantiate Virtual Functions (SR-IOV) 66

3.2. Loading the Driver 66

 Software/Driver Configuration and Fine-tuning 67

4.1. VF Communication 67

4.2. VF Link state 68

4.3. VF Rate Limiting 68

4.4. Bonding 69

4.5. High Capacity VF Configuration 71

 Software/Driver Unloading 73

5.1. Unloading the Driver 73

IV. IWARP RDMA OFFLOAD 74

 Introduction 75

1.1. Hardware Requirements 75

1.2. Software Requirements 75

 Software/Driver Installation 77

2.1. Pre-requisites 77

2.2. Installation 77

 Software/Driver Loading 78

3.1. Loading iWARP Driver 78

 Software/Driver Configuration and Fine-tuning 79

4.1. Testing connectivity with ping and rping 79

4.2. Enabling various MPIs 80

4.3. Setting up NFS-RDMA 88

4.4. HMA 89

4.5. Performance Tuning 90

 Software/Driver Unloading 91

Chelsio Unified Wire for Linux vi

V. ISER 92

 Introduction 93

1.1. Hardware Requirements 93

1.2. Software Requirements 93

 Kernel Configuration 95

 Software/Driver Installation 96

3.1. Pre-requisites 96

3.2. Installation 96

 Software/Driver Loading 97

 Software/Driver Configuration and Fine-tuning 98

5.1. HMA 99

5.2. Performance Tuning 99

 Software/Driver Unloading 100

VI. WD-UDP 101

 Introduction 102

1.1. Hardware Requirements 102

1.2. Software Requirements 102

 Software/Driver Installation 104

1.1. Pre-requisites 104

1.2. Installation 104

 Software/Driver Loading 105

 Software/Driver Configuration and Fine-tuning 106

3.1. Accelerating UDP Socket Communications 106

 Software/Driver Unloading 111

VII. NVME-OF IWARP 112

 Introduction 113

1.1. Hardware Requirements 113

1.2. Software Requirements 113

 Kernel Configuration 115

 Software/Driver Installation 116

3.1. Pre-requisites 116

3.2. Installation 116

 Software/Driver Loading 117

 Software/Driver Configuration and Fine-tuning 118

5.1. Target 118

5.2. Initiator 119

5.3. HMA 119

5.4. Performance Tuning 120

 Software/Driver Unloading 121

Chelsio Unified Wire for Linux vii

VIII. SPDK NVME-OF IWARP 122

 Introduction 123

1.1. Hardware Requirements 123

1.2. Software Requirements 123

 Kernel Configuration 124

 Software/Driver Installation 125

3.1. Pre-requisites 125

3.2. Installation 125

 Software/Driver Loading 126

 Software/Driver Configuration and Fine-tuning 127

5.1. Target 127

5.2. Initiator 128

5.3. Performance Tuning 128

 Software/Driver Unloading 129

IX. NVME-OF TOE 130

 Introduction 131

1.1. Hardware Requirements 131

1.2. Software Requirements 131

 Kernel Configuration 133

 Software/Driver Installation 134

3.1. Installation 134

 Software/Driver Loading 135

 Software/Driver Configuration and Fine-tuning 136

5.1. Target 136

5.2. Initiator 136

5.3. HMA 137

5.4. Performance Tuning 138

 Software/Driver Unloading 139

X. SPDK NVME-OF TOE 140

 Introduction 141

1.1. Hardware Requirements 141

1.2. Software Requirements 141

 Kernel Configuration 143

 Software/Driver Installation 144

3.1. Installation 144

 Software/Driver Loading 145

 Software/Driver Configuration and Fine-tuning 146

5.1. Target 146

5.2. Initiator 147

 Software/Driver Unloading 148

Chelsio Unified Wire for Linux viii

XI. SOFTIWARP 149

 Introduction 150

1.1. Hardware Requirements 150

1.2. Software Requirements 151

 Kernel Configuration 152

 Software/Driver Installation 153

3.1. Installation 153

 Software/Driver Loading 154

 Software/Driver Configuration and Fine-tuning 155

5.1. Initiator/Client 155

 Software/Driver Unloading 156

XII. LIO ISCSI TARGET OFFLOAD 157

 Introduction 158

1.1. Hardware Requirements 158

1.2. Software Requirements 158

 Kernel Configuration 160

 Software/Driver Installation 163

3.1. Pre-requisites 163

3.2. Installation 163

 Software/Driver Loading 165

 Software/Driver Configuration and Fine-tuning 166

5.1. Configuring LIO iSCSI Target 166

5.2. Offloading LIO iSCSI Connection 166

5.3. Running LIO iSCSI and Network Traffic Concurrently 166

5.4. Performance Tuning 167

 Software/Driver Unloading 168

6.1. Unloading the LIO iSCSI Target Offload Driver 168

6.2. Unloading the NIC Driver 168

XIII. ISCSI PDU OFFLOAD INITIATOR 169

 Introduction 170

1.1. Hardware Requirements 170

1.2. Software Requirements 171

 Software/Driver Installation 172

2.1. Pre-requisites 172

2.2. Installation 172

 Software/Driver Loading 173

 Software/Driver Configuration and Fine-tuning 174

4.1. Accelerating open-iSCSI Initiator 174

4.2. HMA 176

4.3. Auto login from cxgb4i initiator at OS bootup 177

Chelsio Unified Wire for Linux ix

4.4. Performance Tuning 177

 Software/Driver Unloading 179

XIV. CRYPTO OFFLOAD 180

 Introduction 181

1.1. Hardware Requirements 181

1.2. Software Requirements 181

 Kernel Configuration 183

 Software/Driver Installation 185

3.1. Pre-requisites 185

3.2. Installation 185

 Software/Driver Loading 186

4.1. Inline 186

4.2. Co-processor 186

 Software/Driver Configuration and Fine-tuning 187

5.1. Configuring OpenSSL 187

5.2. Inline TLS Offload 187

5.3. Co-processor 191

5.4. Performance Tuning 194

 Software/Driver Unloading 195

XV. DATA CENTER BRIDGING (DCB) 196

 Introduction 197

1.1. Hardware Requirements 197

1.2. Software Requirements 198

 Software/Driver Installation 199

 Software/Driver Loading 200

 Software/Driver Configuration and Fine-tuning 201

4.1. Configuring Cisco Nexus 5010 switch 201

4.2. Configuring the Brocade 8000 switch 203

 Running NIC & iSCSI Traffic together with DCBx 205

XVI. FCOE FULL OFFLOAD INITIATOR 206

 Introduction 207

1.1. Hardware Requirements 207

1.2. Software Requirements 207

 Software/Driver Installation 209

 Software/Driver Loading 210

 Software/Driver Configuration and Fine-tuning 211

4.1. Configuring Cisco Nexus 5010 and Brocade switch 211

4.2. FCoE fabric discovery verification 211

4.3. Formatting the LUNs and Mounting the Filesystem 214

Chelsio Unified Wire for Linux x

4.4. Creating Filesystem 215

4.5. Mounting the formatted LUN 216

 Software/Driver Unloading 217

XVII. OFFLOAD BONDING 218

 Introduction 219

1.1. Hardware Requirements 219

1.2. Software Requirements 219

 Software/Driver Installation 221

 Software/Driver Loading 222

 Software/Driver Configuration and Fine-tuning 223

4.1. Offloading TCP traffic over a bonded interface 223

 Software/Driver Unloading 224

XVIII.OFFLOAD MULTI-ADAPTER FAILOVER (MAFO) 225

 Introduction 226

1.1. Hardware Requirements 226

1.2. Software Requirements 226

 Software/Driver Installation 228

 Software/Driver Loading 229

 Software/Driver Configuration and Fine-tuning 230

4.1. Offloading TCP traffic over a bonded interface 230

 Software/Driver Unloading 231

XIX. UDP SEGMENTATION OFFLOAD AND PACING 232

 Introduction 233

1.1. Hardware Requirements 234

1.2. Software Requirements 234

 Software/Driver Installation 235

 Software/Driver Loading 236

 Software/Driver Configuration and Fine-tuning 237

4.1. Modifying the Application 237

4.2. Configuring UDP Pacing 238

4.3. Enabling Offload 240

 Software/Driver Unloading 241

XX. OFFLOAD IPV6 242

 Introduction 243

1.1. Hardware Requirements 243

1.2. Software Requirements 243

 Software/Driver Installation 245

2.1. Pre-requisites 245

Chelsio Unified Wire for Linux xi

2.2. Installation 245

 Software/Driver Loading 246

 Software/Driver Configuration and Fine-tuning 247

 Software/Driver Unloading 248

5.1. Unloading the NIC Driver 248

5.2. Unloading the TOE Driver 248

XXI. WD SNIFFING AND TRACING 249

 Theory of Operation 250

1.1. Hardware Requirements 251

1.2. Software Requirements 252

 Software/Driver Installation 253

2.1. Pre-requisites 253

2.2. Installation 253

 Usage 254

3.1. Installing Basic Support 254

3.2. Using Sniffer (wd_sniffer) 254

3.3. Using Tracer (wd_tcpdump_trace) 254

XXII. CLASSIFICATION AND FILTERING 256

 Introduction 257

1.1. Hardware Requirements 257

1.2. Software Requirements 258

 LE-TCAM Filters 259

2.1. Configuration 259

2.2. Creating Filter Rules 262

2.3. Listing Filter Rules 263

2.4. Removing Filter Rules 263

2.5. Layer 3 Example 264

2.6. Layer 2 Example 265

2.7. Filtering VF traffic 267

 Hash/DDR Filters 269

3.1. Configuration 269

3.2. Creating Filter Rules 271

3.3. Listing Filter Rules 273

3.4. Removing Filter Rules 274

3.5. Filter Priority 274

3.6. Swap MAC Feature 274

3.7. Traffic Mirroring 274

3.8. Packet Tracing and Hit Counters 276

 NAT Filtering 278

Chelsio Unified Wire for Linux xii

XXIII. OVS KERNEL DATAPATH OFFLOAD 279

 Introduction 280

1.1. Hardware Requirements 280

1.2. Software Requirements 281

 Software/Driver Installation 282

2.1. Pre-requisites 282

2.2. Installation 282

 Software/Driver Configuration and Fine Tuning 283

3.1. Configuring OVS Machine 284

3.2. Creating OVS flows 286

3.3. Verifying OVS Flow Dump 290

3.4. Setting up ODL with OVS 290

 Software/Driver Uninstallation 292

XXIV. MESH TOPOLOGY 293

 Introduction 294

1.1. Hardware Requirements 294

1.2. Software Requirements 295

1.3. Mesh topology 295

 Software/Driver Installation 296

 Software/Driver Configuration and Fine-tuning 297

XXV. TRAFFIC MANAGEMENT 298

 Introduction 299

1.1. Hardware Requirements 299

1.2. Software Requirements 300

 Software/Driver Loading 301

 Software/Driver Configuration and Fine-tuning 302

3.1. Traffic Management Rules 302

3.2. Configuring Traffic Management 304

 Usage 307

4.1. Non-Offloaded Connections 307

4.2. Offloaded Connections 307

4.3. Offloaded Connections with Modified Application 308

4.4. Inline TLS Offload Connections 309

 Software/Driver Unloading 310

XXVI. UNIFIED BOOT 311

 Introduction 312

1.1. Hardware Requirements 312

1.2. Software Requirements 313

1.3. Pre-requisites 313

Chelsio Unified Wire for Linux xiii

 Secure Boot 314

 Flashing Firmware and Option ROM 315

3.1. Preparing USB flash drive 315

3.2. Legacy 316

3.3. uEFI 319

3.4. cxgbtool (OS Level) 329

 Configuring PXE Server 330

 PXE Boot Process 331

5.1. Legacy PXE Boot 331

5.2. uEFI PXE Boot 334

 FCoE Boot Process 339

6.1. Legacy FCoE Boot 339

6.2. uEFI FCoE Boot 345

 iSCSI Boot Process 351

7.1. Legacy iSCSI Boot 351

7.2. uEFI iSCSI Boot 359

 Update Option ROM settings 369

8.1. Default settings 369

8.2. Custom Settings (using cxgbtool) 370

 iPXE 372

9.1. Configuring iPXE Server for Linux OS installation 372

9.2. Legacy iPXE TFTP Boot 374

9.3. uEFI iPXE TFTP Boot 375

9.4. uEFI iPXE HTTP Boot 376

XXVII. APPENDIX 378

 Troubleshooting 379

 Chelsio End-User License Agreement (EULA) 382

Chelsio Unified Wire

Chelsio Unified Wire for Linux 14

I. Chelsio Unified Wire

Chelsio Unified Wire

Chelsio Unified Wire for Linux 15

 Introduction

Thank you for choosing Chelsio Unified Wire adapters. These high speed, single chip, single

firmware cards provide enterprises and data centers with high-performance solutions for various

Network and Storage related requirements.

The Terminator series is Chelsio’s next generation of highly integrated, hyper-virtualized

1/10/25/40/50/100GbE controllers. The adapters are built around a programmable protocol-

processing engine, with full offload of a complete Unified Wire solution comprising NIC, TOE,

iWARP RDMA, iSCSI, FCoE, and NAT support. It scales to true 100Gb line rate operation from a

single TCP connection to thousands of connections and allows simultaneous low latency and high

bandwidth operation thanks to multiple physical channels through the ASIC.

Ideal for all data, storage and high-performance clustering applications, the Unified Wire

adapters enable a unified fabric over a single wire by simultaneously running all unmodified IP

sockets, Fibre Channel and InfiniBand applications over Ethernet at line rate.

Designed for deployment in virtualized data centers, cloud service installations and high-

performance computing environments, Chelsio adapters bring a new level of performance metrics

and functional capabilities to the computer networking industry.

Chelsio Unified Wire software comes in two formats: Source code and RPM package forms.

Installing from source requires compiling the package to generate the necessary binaries. You

can choose this method when you are using a custom-built kernel. You can also install the

package using the interactive GUI installer. In other cases, download the RPM package specific

to your operating system and follow the steps mentioned to install the package.

This document describes the installation, use, and maintenance of Unified Wire software and

its various components.

1.1. Features

The Chelsio Unified Wire package uses a single command to install various drivers and utilities.

It consists of the following software:

 Network (NIC/TOE)

 Virtual Function Network (vNIC)

 iWARP RDMA Offload

 iSER (Target and Initiator)

 WD-UDP

 NVMe-oF iWARP (Target and Initiator)

 SPDK NVMe-oF iWARP (Target and Initiator)

 NVMe-oF TOE (Target and Initiator)

 SPDK NVMe-oF TOE Target

Chelsio Unified Wire

Chelsio Unified Wire for Linux 16

 SoftiWARP Initiator

 LIO iSCSI Target Offload

 iSCSI PDU Offload Target

 iSCSI PDU Offload Initiator

 Crypto Offload

 Data Center Bridging (DCB)

 FCoE full offload Initiator

 Offload Bonding

 Offload Multi-Adapter Failover (MAFO)

 UDP Segmentation Offload and Pacing

 Offload IPv6

 WD Sniffing and Tracing

 Classification and Filtering

 OVS Kernel Datapath Offload

 Mesh Topology

 Traffic Management feature (TM)

 Unified Boot Software

 Utility Tools (cop, cxgbtool, t4_perftune, benchmark tools)

For detailed instructions on loading, unloading and configuring the drivers/tools, refer to their

respective sections.

1.2. Hardware Requirements

The Chelsio Unified Wire software supports Chelsio Terminator series of Unified Wire adapters.

To know more about the list of adapters supported by each driver, refer to the respective sections.

1.3. Software Requirements

The Chelsio Unified Wire software has been developed to run on 64-bit Linux based platforms

and therefore it is a base requirement for running the driver. To know more about the complete

list of operating systems supported by each driver, refer to their respective sections.

1.4. Package Contents

 Source Package

The Chelsio Unified Wire source package consists of the following files/directories:

 debrules: This directory contains packaging specification files required for building Debian

packages.

 docs: This directory contains support documents - README, Release Notes, and User’s

Guide (this document) for the software.

 kernels: This directory contains kernel.org-5.4 installation files.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 17

 libs: This directory is for iWARP and WD-UDP libraries. The libibverbs library has an

implementation of RDMA verbs which will be used by iWARP applications for data

transfers. The librdmacm library works as an RDMA connection manager. The libcxgb4

library works as an interface between the above-mentioned generic libraries and Chelsio

iWARP driver. The libcxgb4_sock library is a LD_PRELOAD-able library that accelerates

UDP Socket communications transparently and without recompilation of the user

application.

 RPM-Manager: This directory contains support scripts used for cluster deployment.

 scripts: Support scripts used by the Unified Wire Installer.

 specs: The packaging specification files required for building RPM packages.

 src: Source code for different drivers.

 support: This directory contains source files for the dialog utility.

 tools:

• autoconf-x.xx: This directory contains the source for Autoconf tool needed for

iWARP and WD-UDP libraries.

• benchmarks: This directory contains various benchmarking tools to measure

throughput and latency of various networks.

• chelsio_adapter_config: This directory contains scripts and binaries needed to

configure Chelsio adapters.

• cop: The cop tool compiles offload policies into a simple program form that can be

loaded into the kernel and interpreted. These offload policies are used to determine

the settings to be used for various connections. The connections to which the

settings are applied are based on matching filter specifications. Find more details

on this tool in its manual page (run man cop command).

• cudbg: Chelsio Unified Debug tool which facilitates collection and viewing of

various debug entities like register dump, Devlog, CIM LA, etc.

• cxgbtool: The cxgbtool queries or sets various aspects of Chelsio network

interface cards. It complements standard tools used to configure network settings

and provides functionality not available through such tools. Find more details on

this tool in its manual page (run man cxgbtool command). To use cxbtool for FCoE

Initiator driver, use [root@host~]# cxgbtool stor -h

• nvme_utils: This directory contains nvmecli, nvmetcli and targetcli installation

files, and dependent components.

• rdma_tools: This directory contains iWARP benchmarking tools.

• t4_sniffer: This directory contains sniffer tracing and filtering libraries. See WD

Sniffing and Tracing chapter for more information.

• 90-rdma.rules: This file contains udev rules needed for running RDMA

applications as a non-root user.

• chdebug: This script collects operating system environment details and debug

information which can be sent to the support team, to troubleshoot Chelsio

hardware/software related issues.

• chiscsi_set_affinity.sh: This shell script is used for mapping iSCSI Worker

threads to different CPUs.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 18

• chsetup: The chsetup tool loads NIC, TOE and iWARP drivers, and creates WD-

UDP configuration file.

• chstatus: This utility provides status information on any Chelsio NIC in the system.

• Makefile: The Makefile for building and installing tools.

• t4_latencytune.sh: Script used for latency tuning of Chelsio adapters.

• t4_perftune.sh: This shell script is to tune the system for higher performance. It

achieves it through modifying the IRQ-CPU binding. This script can also be used

to change Tx coalescing settings.

• t4-forward.sh: RFC2544 Forward test tuning script.

• uname_r: This file is used by chstatus script to verify whether the Linux platform

is supported or not.

• wdload: UDP acceleration tool.

• wdunload: Used to unload all the loaded Chelsio drivers.

 Uboot: The directory contains Unified Boot Option ROM image (cubt4.bin), uEFI driver

(ChelsioUD.efi), default boot configuration file (boot.cfg), and a legacy flash utility

(cfut4.exe) to flash the option ROM onto Chelsio adapters.

 chelsio-dkms.conf: DKMS configuration files for Ubuntu.

 install.py, dialog.py: Python scripts needed for the GUI installer.

 EULA: Chelsio’s End User License Agreement.

 install-dkms.sh: Installs necessary drivers to DKMS tree for Ubuntu.

 install.log: File containing installation summary.

 Makefile: The Makefile for building and installing from the source.

 sample_machinefile: Sample file used during iWARP installation on cluster nodes.

 RPM Package

The Chelsio Unified Wire RPM package consists of the following:

 config: This directory contains firmware configuration files.

 docs: This directory contains support documents. That is README, Release Notes, and

User’s Guide (this document) for the software.

 DRIVER-RPMS: RPM packages of Chelsio drivers.

 scripts: Support scripts used by the Unified Wire Installer.

 EULA: Chelsio’s End User License Agreement.

 install.py: Python script that installs the RPM package. See Chelsio Unified Wire’s

Software/Driver Installation section for more information.

 uninstall.py: Python script that uninstalls the RPM package. See Chelsio Unified Wire’s

Software/Driver Uninstallation section for more information.

 Uboot: The directory contains Unified Boot Option ROM image (cubt4.bin), uEFI driver

(ChelsioUD.efi), default boot configuration file (boot.cfg), and a legacy flash utility

(cfut4.exe) to flash the option ROM onto Chelsio adapters.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 19

 Hardware Installation

Follow these steps to install the Chelsio adapter in your system:

1. Shutdown/power off your system.

2. Power off all remaining peripherals attached to your system.

3. Unpack the Chelsio adapter and place it on an anti-static surface.

4. Remove the system case cover as per the system manufacturer’s instructions.

5. Remove the PCI filler plate from the slot where you will install the Ethernet adapter.

6. For maximum performance, it is highly recommended to install the adapter into a PCIe x8/x16

slot.

7. Holding the Chelsio adapter by the edges, align the edge connector with the PCI connector

on the motherboard. Apply even pressure on both edges until the card is firmly seated. It may

be necessary to remove the SFP (transceiver) modules prior to inserting the adapter.

8. Secure the Chelsio adapter with a screw, or other securing mechanism, as described by the

system manufacturer’s instructions. Replace the case cover.

9. After securing the card, ensure that the card is still fully seated in the PCIE x8/x16 slot as

sometimes the process of securing the card causes the card to become unseated.

10. Connect a fiber/twinax cable, multi-mode for short range (SR) optics or single-mode for long

range (LR) optics, to the Ethernet adapter or regular Ethernet cable for the 1Gb Ethernet

adapter.

11. Power on your system.

12. Run update-pciids command to download the current version of PCI ID list.

13. Verify if the adapter was installed successfully by using the lspci command.

For Chelsio adapters, the physical functions are currently assigned as:

 Physical functions 0 - 3: for the SR-IOV functions of the adapter

 Physical function 4: for all NIC functions of the adapter

 Physical function 5: for iSCSI

All 4-ports of T6425-CR adapter will be functional only if PCIe x8 -> 2x PCIe x4 slot

bifurcation is supported by the system and enabled in BIOS. Otherwise, only 2-ports

will be functional.

Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 20

 Physical function 6: for FCoE

 Physical function 7: Currently not assigned

Once Unified Wire package is installed and loaded, examine the output of dmesg to see if the card

is discovered. You should see a similar output:

The above outputs indicate the hardware configuration of the adapter as well as the serial number.

Network device names for Chelsio’s physical ports are assigned using the following

convention: the port farthest from the motherboard will appear as the first network

interface. However, for T5 40G and T420-BT adapters, the association of physical

Ethernet ports and their corresponding network device names is opposite. For these

adapters, the port nearest to the motherboard will appear as the first network

interface.

Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 21

 Software/Driver Installation

There are two main methods to install the Chelsio Unified Wire package: from source and RPM.

If you decide to use source, you can install the package using CLI or GUI mode.

If you decide to use RPM, you can install the package using Menu or CLI mode.

RPM packages support only distro base kernels. In case of updated/custom kernels, use source

package.

The following table describes the various configuration tuning options available during

installation and drivers/software installed with each option by default:

Configuration Tuning
Option

Description Driver/Software installed

Unified Wire (Default)
Default Configuration. Configures

adapters to run all protocols
simultaneously.

NIC/TOE,vNIC,iWARP,iSER,WD-UDP,
NVMe-oF iWARP, SPDK NVMe-oF

iWARP,NVMe-oF TOE,SPDK NVMe-oF
TOE,SoftiWARP,LIO iSCSI Target,iSCSI

Target,iSCSI Initiator,FCoE Initiator,
Bonding,MAFO,UDP-SO,IPv6,Sniffer &

Tracer,Filtering,Mesh,TM

Low latency Networking
Configures adapters to run TOE and

iWARP traffic with low latency.
TOE, iWARP, WD-UDP, IPv6, Bonding,

MAFO

High capacity RDMA
Configures adapters to establish a large

number of iWARP connections.
iWARP

RDMA Performance Improves iWARP performance. iWARP, iSER, NVMe-oF

High capacity TOE
Configures adapters to establish a large

number of TOE connections.
TOE, Bonding, MAFO, IPv6

iSCSI Performance+ Improves iSCSI performance.
LIO iSCSI Target, iSCSI Target, iSCSI

Initiator, Bonding, DCB

UDP Seg.Offload &
Pacing+

Configures adapters to establish a large
number of UDP-SO connections.

UDP-SO, Bonding

Wire Direct Latency
Configures adapters to provide low

Wire Direct latency.
TOE, iWARP, WD-UDP

High Capacity WD
Configures adapters to establish a large

number of WD-UDP connections.
WD-UDP

NVMe Performance^ Improves NVMe-oF performance. iWARP, NVMe-oF, SPDK NVMe-oF

High Capacity VF
Configures adapters to support more

VFs.
NIC, vNIC

High Capacity Hash Filter Configures large number of filters Filtering

+ Supported only on T5 ^ Supported only on T6

3.1. Pre-requisites

• Package Manager yum/apt/zypper should be configured using any of the OS

recommended ways to resolve and install missing packages.

• Make, gcc, kernel-devel, and kernel-headers packages should be installed for the

compilation of drivers and utilities.

Crypto, DCB and OVS drivers will not be installed by default. Refer to their

respective sections for instructions on installing them.

Important

Chelsio Unified Wire

Chelsio Unified Wire for Linux 22

• python3 should be installed for Chelsio Unified Wire package scripts to run. In case of

older distributions which do not support python3, source package CLI (make) should be

used for the installation.

3.2. Mounting debugfs

All driver debug data is stored in debugfs, which will be mounted in most cases. If not, mount it

manually using:

 [root@host~]# mount -t debugfs none /sys/kernel/debug

3.3. Installing Chelsio Unified Wire from source

 GUI mode (with Dialog utility)

1. Download the Unified Wire driver package (tarball) from Chelsio Download Center.

2. Extract the downloaded package using the following command:

[root@host~]# tar zxvfm <driver_package>.tar.gz

3. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

4. Run the following script to start the GUI installer:

[root@host~]# ./install.py

5. If Dialog utility is present, you can skip to step 6. If not, press y to install it when the installer

prompts for input.

6. Select install under Choose an action.

7. Select Enable IPv6-Offload to install drivers with IPv6 Offload support or Disable IPv6-offload

to continue installation without IPv6 offload support.

https://service.chelsio.com/

Chelsio Unified Wire

Chelsio Unified Wire for Linux 23

8. Select the required configuration tuning option.

9. Under Choose install components, select all to install all the related components for the

option chosen in step 8 or select custom to install specific components.

10. Select the required performance tuning option.

i. Enable Binding IRQs to CPUs: Bind MSI-X interrupts to different CPUs and disable

IRQ balance daemon.

To install Crypto Offload, OVS drivers and benchmark tools, select custom

option.
Important

The tuning options may vary depending on the Linux distribution.

Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 24

ii. Retain IRQ balance daemon: Do not disable IRQ balance daemon.

iii. TX-Coalasce: Write tx_coal=2 to modprobe.d/conf.

11. The selected components will now be installed.

12. After successful installation, a summary of installed components are displayed.

13. Select View log to view the installation log or Exit to continue.

For more information on the Performance tuning options, refer to the Performance

Tuning section of the Network (NIC/TOE) chapter.

Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 25

14. Select Yes to exit the installer or No to go back.

15. Reboot your machine for changes to take effect.

 CLI mode (without Dialog utility)

If your system does not have Dialog or you choose not to install it, follow the steps mentioned

below to install the Unified Wire package:

1. Download the Unified Wire driver package from the Chelsio Download Center.

2. Extract the downloaded package using the following command:

[root@host~]# tar zxvfm <driver_package>.tar.gz

3. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

4. Run the following script to start the installer.

[root@host~]# ./install.py -c <target>

5. Enter the number corresponding to the Configuration tuning option in the Input field and

press Enter.

Press Esc or Ctrl+C to exit the installer at any point of time.

Note

https://service.chelsio.com/

Chelsio Unified Wire

Chelsio Unified Wire for Linux 26

6. The selected components will now be installed.

After successful installation, press 1 to view the installation log. Press any key to exit from

the installer.

7. Reboot your machine for changes to take effect.

 iWARP driver installation on Cluster nodes

Chelsio’s Unified Wire package allows installing iWARP drivers on multiple Cluster nodes with a

single command. Follow the procedure mentioned below:

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Create a file (machinefilename) containing the IP addresses or hostnames of the nodes in

the cluster. You can view the sample file, sample_machinefile, provided in the package to

view the format in which the nodes have to be listed.

3. Now, execute the following command:

[root@host~]# ./install.py -C -m <machinefilename>

4. Select the required configuration tuning option. The tuning options may vary depending on

the Linux distribution.

5. Select the required Cluster Configuration.

6. The selected components will now be installed.

The above commands will install iWARP (iw_cxgb4) and TOE (t4_tom) drivers on all the nodes

listed in the machinefilename file.

 CLI mode

1. Download the Unified Wire driver package from the Chelsio Download Center.

2. Extract the downloaded package using the following command.

 [root@host~]# tar zxvfm ChelsioUwire-x.x.x.x.tar.gz

To customize the installation, view the help by typing
[root@host~]#./install.py –h

Important

Ensure that you have enabled password less authentication with ssh on the peer

nodes for this feature to work.

Important

https://service.chelsio.com/

Chelsio Unified Wire

Chelsio Unified Wire for Linux 27

3. Change your current working directory to the Chelsio Unified Wire package directory and

build the source.

[root@host~]# cd ChelsioUwire-x.x.x.x

[root@host~]# make

4. Install the drivers, tools, and libraries.

[root@host~]# make install

5. The default configuration tuning option is Unified Wire. The configuration tuning can be

selected using the following commands:

[root@host~]# make CONF=<configuration_tuning>

[root@host~]# make CONF=<configuration_tuning> install

6. Reboot your machine for changes to take effect.

 CLI mode (additional flags)

Provided here are steps to build and install drivers using additional flags. For the complete list,

view help by running make help.

Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

▪ To build and install all drivers without IPv6 support,

[root@host~]# make ipv6_disable=1

[root@host~]# make ipv6_disable=1 install

▪ The default configuration tuning option is Unified Wire. The configuration tuning can be

selected using the following commands:

[root@host~]# make CONF=<configuration_tuning> <Build Target>

[root@host~]# make CONF=<configuration_tuning> <Install Target>

To view the different configuration tuning options, view help by typing
[root@host~]# make help

Note

Steps 3 and 4 mentioned above will NOT install Crypto, DCB, OVS drivers, and

benchmark tools. They will have to be installed manually. Refer to their

respective sections for instructions on installing them.

Important

Chelsio Unified Wire

Chelsio Unified Wire for Linux 28

▪ To build and install drivers along with benchmarks,

[root@host~]# make BENCHMARKS=1

[root@host~]# make BENCHMARKS=1 install

▪ The drivers will be installed as RPMs or Debian packages (for Ubuntu/Debian). To skip this

and install drivers,

[root@host~]# make SKIP_RPM=1 install

▪ The installer will remove the Chelsio specific drivers (inbox/outbox) from initramfs. To skip

this and install drivers,

[root@host~]# make SKIP_INIT=1 install

▪ The installer will check for the required dependency packages and will install them if they

are missing from the machine. To skip this and install drivers,

[root@host~]# make SKIP_DEPS=1 install

3.4. Installing Chelsio Unified Wire from RPM

 Menu Mode

1. Download the tarball specific to your operating system and architecture from the Chelsio

Download Center.

2. Extract the downloaded package. Example, for RHEL/Rocky/AlmaLinux 8.9,

[root@host~]# tar zxvfm <driver_package>-RHEL8.9-x86_64.tar.gz

3. Change your current working directory to the Chelsio Unified Wire package directory.

 [root@host~]# cd ChelsioUwire-x.x.x.x-<OS>-<arch>

• To view the different configuration tuning options, view the help by typing
[root@host~]# make help

• If IPv6 is administratively disabled in the machine, the drivers will be built and

installed without IPv6 Offload support by default.

Note

• IPv6 should be enabled in the machine to use the RPM Packages.

• Drivers installed from RPM Packages do not have DCB support.

Note

https://service.chelsio.com/
https://service.chelsio.com/

Chelsio Unified Wire

Chelsio Unified Wire for Linux 29

4. Install Unified Wire.

[root@host~]# ./install.py

5. Select the Installation type as described below. Enter the corresponding number in the Input

field and press Enter.

a. Unified Wire: Install all the drivers in the Unified Wire software package.

b. Custom: Customize the installation. Use this option to install drivers/software and

related components as per the tuning option selected.

c. EXIT: Exit the installer.

6. The selected components will now be installed.

7. Reboot your machine for changes to take effect.

 CLI mode

1. Download the tarball specific to your operating system and architecture from the Chelsio

Download Center.

2. Extract the downloaded package. Example, for RHEL/Rocky/AlmaLinux 8.9:

[root@host~]# tar zxvfm ChelsioUwire-x.x.x.x-RHEL8.9-x86_64.tar.gz

3. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x-<OS>-<arch>

4. Install Unified Wire.

[root@host~]# ./install.py -i <nic_toe/all/udpso/wd/crypto/ovs>

Here,

nic_toe : NIC and TOE drivers only
all : All Chelsio drivers
udpso : UDP segmentation offload capable NIC and TOE drivers only
wd : Wire Direct drivers and libraries only
crypto : Crypto drivers and OpenSSL modules.
ovs : OVS modules and NIC driver.

If the installation aborts with the message Resolve the errors/dependencies

manually and restart the installation, go through the install.log to resolve

errors/dependencies and then start the installation again.

Note

The Installation options may vary depending on the Configuration tuning option

selected.

Note

The Installation options may vary depending on the Linux Distribution.

Note

https://service.chelsio.com/
https://service.chelsio.com/

Chelsio Unified Wire

Chelsio Unified Wire for Linux 30

5. The default configuration tuning option is Unified Wire. The configuration tuning can be

selected using the following command:

 [root@host~]# ./install.py –i <Installation mode> -c <configuration_tuning>

6. Reboot your machine for changes to take effect.

 iWARP driver installation on cluster nodes

1. Change your current working directory to the Chelsio Unified Wire package directory.

 [root@host~]# cd ChelsioUwire-x.x.x.x-<OS>-<arch>

2. Create a file (machinefilename) containing the IP addresses or hostnames of the nodes in the

cluster. You can view the sample file, sample_machinefile, provided in the package to view

the format in which the nodes have to be listed.

3. Now, execute the following command:

[root@host~]# ./install.py -C -m <machinefilename> -i

<nic_toe/all/udpso/wd> -c <configuration_tuning>

The above command will install iWARP (iw_cxgb4) and TOE (t4_tom) drivers on all the

nodes listed in the <machinefilename> file.

4. Reboot your machine for changes to take effect.

3.5. Firmware Update

The firmware is installed on the system, typically in /lib/firmware/cxgb4, and the driver will

auto-load the firmware if an update is required. The kernel must be configured to enable

userspace firmware loading support:

Device Drivers > Generic Driver Options > Userspace firmware loading support

The firmware version can be verified using ethtool.

[root@host~]# ethtool -i <iface>

Note
To view the different configuration tuning options, view the help by typing
[root@host~]# ./install.py –h

Ensure that you have enabled password less authentication with ssh on the peer

nodes for this feature to work.
Important

Chelsio Unified Wire

Chelsio Unified Wire for Linux 31

 Verifying Firmware Signature

The firmware signature can be optionally verified to ensure the integrity of

• Firmware binary file (or)

• Firmware loaded on the adapter flash

Contact Chelsio support at support@chelsio.com for the public key and a sample program code

to verify the firmware signature. You can use the sample program from Chelsio or your own

developed program for the verification. Below are the steps provided to use the Chelsio program:

1. Compile the sample program code, verifyfwsignature.c received from Chelsio support.

[root@host~]# gcc -g verifyfwsignature.c -o verifyfwsignature -l crypto

• Firmware binary file

Use the sample program, verifyfwsignature, and the public key, public_key.pem to verify the

Firmware binary.

[root@host~]# ./verifyfwsignature -k public_key.pem -f

/lib/firmware/cxgb4/t6fw-x.x.x.x.bin

using public key file public_key.pem

using firmware binary file t6fw-x.x.x.x.bin

…

…

ECDSA signature verified successfully

• Firmware loaded on adapter flash

2. Collect all adapter logs using cudbg_app.

[root@host~]# cudbg_app --collect all ethX logs

3. Extract the flash dump from the collected logs.

[root@host~]# cudbg_app --extract flash --path flash_extract logs

4. Use the sample program, verifyfwsignature, and the public key, public_key.pem to verify the

Firmware binary.

[root@host~]# ./verifyfwsignature -k public_key.pem -l

flash_extract/debug_1/flash

using public key file public_key.pem

using flash dump flash_extract/debug_1/flash

…

…

ECDSA signature verified successfully

mailto:support@chelsio.com

Chelsio Unified Wire

Chelsio Unified Wire for Linux 32

 Configuring Chelsio Network Interfaces

To test Chelsio adapters’ features it is required to use two machines both with Chelsio’s network

adapters installed. These two machines can be connected directly without a switch (back-to-

back), or both connected to a switch. The interfaces have to be declared and configured. The

configuration files for network interfaces on Red Hat Enterprise Linux (RHEL)/Rocky/AlmaLinux

distributions are kept under /etc/sysconfig/network-scripts.

4.1. Configuring Adapters

T6 Unified Wire adapters support auto-negotiation (enabled by default) which allows link

parameters like speed, duplex, FEC, and Pause to be negotiated with the PEER.

 Setting Speed

T6 100G ports support multiple speeds viz. 100G, 50G, 40G, 25G, 10G and 1G. T6 25G ports

support 25G, 10G, and 1G speeds. The supported speeds can be seen using ethtool.

Below is a sample output for T6 100G port:

Some operating systems may attempt to auto-configure the detected hardware,

and some may not detect all ports on a multi-port adapter. If this happens, refer

to the operating system documentation for manually configuring the

network device.

Note

ethtool v4.8 or higher required.

Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 33

[root@host~]# ethtool --change <ethX> advertise 0x4482000000

• Optics

Optics do not support auto-negotiation. Use the following command to change the speed:

[root@host~]# ethtool -s <ethX> speed <speed> autoneg off

The speed, duplex and FEC (if applicable) should be manually set to the same values on the

PEER for the link to come up. For example, to set 25G speed on 100G port:

[root@host~]# ethtool -s <ethX> speed 25000 autoneg off

• Twinax

Twinax cables support auto-negotiation. The following speeds can be set in the advertise field.

o Advertise only 100G

[root@host~]# ethtool --change <ethX> advertise 0x4000000000

o Advertise only 40G

[root@host~]# ethtool --change <ethX> advertise 0x2000000

o Advertise only 50G

[root@host~]# ethtool --change <ethX> advertise 0x400000000

o Advertise only 25G

[root@host~]# ethtool --change <ethX> advertise 0x80000000

o Advertise 100/50/40/25G

o Auto-negotiation OFF

The advertise option is only supported with Auto-negotiation enabled. If it is disabled or to

set 10G/1G speeds (which do not support Auto-negotiation), use the following command:

[root@host~]# ethtool -s <ethX> speed <speed> autoneg off

Chelsio Unified Wire

Chelsio Unified Wire for Linux 34

 Setting FEC

100G, 50G and 25G speeds support changing Forward Error Correction (FEC). The existing

FEC settings can be viewed using,

[root@host~]# cxgbtool <ethX> fec

Below is a sample output on T6 100G port:

RS FEC is set by default for the T6 port at 100G speed. FEC will be automatically determined

with the PEER and the link will come up.

To configure a different FEC, use the below command:

[root@host~]# cxgbtool <ethX> fec <value>

Here value can be:

rs: Reed-Solomon FEC

baser: Base-R/Reed-Solomon FEC

auto: Use standard FEC settings as specified by IEEE 802.3 interpretations of Cable

Transceiver Module parameters.

off: Turn off FEC

 Setting Pause

Pause Autonegotiation is enabled by default. To override it and set Pause parameters, run:

[root@host ~]# ethtool -A <ethX> autoneg off tx on rx on

 Spider and QSA Modes

• T5 Adapters

Chelsio T5 40G adapters can be configured in the following 3 modes:

1. 2X40Gbps: This is the default mode of operation where each port functions as 40Gbps link.

The port nearest to the motherboard will appear as the first network interface (Port 0).

RS FEC is not supported on 50G links. Important

Chelsio Unified Wire

Chelsio Unified Wire for Linux 35

2. 4X10Gbps (Spider): In this mode, port 0 functions as 4 10Gbps links and port 1 is disabled.

3. QSA: This mode adds support for QSA (QSFP to SFP+) modules, enabling smooth, cost-

effective, connections between 40 Gigabit Ethernet adapters and 1 or 10 Gigabit Ethernet

networks using existing SFP+ based cabling. The port farthest from the motherboard will

appear as the first network interface (Port 0).

• T6 Adapters

Chelsio T6 100G adapters can be configured in the following 2 modes:

i. 2X100Gbps: This is the default mode of operation where each port functions as 100Gbps link.

The port farthest to the motherboard will appear as the first network interface (Port 0).

ii. 2X25Gbps (Spider): In this mode, port 0 functions as 2 25Gbps links and port 1 is disabled.

To configure/change the mode of operation, use the following procedure:

1. Run the chelsio_adapter_config.py command to detect all Chelsio adapter(s) present in the

system. Select the adapter to configure by specifying the adapter index.

2. Select Change adapter mode.

3. Select the required mode.

QSA modules will work in the default mode. Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 36

4. Reload the network driver for changes to take effect.

[root@host~]# rmmod cxgb4

[root@host~]# modprobe cxgb4

4.2. Configuring network-scripts

A typical interface network-script (for example eth0) on RHEL 6.X looks like the following:

file: /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE="eth0"

HWADDR=00:30:48:32:6A:AA

ONBOOT="yes"

NM_CONTROLLED="no"

BOOTPROTO="static"

IPADDR=10.192.167.111

NETMASK=255.255.240.0

In the case of DHCP addressing the last two lines should be removed and

BOOTPROTO="static" should be changed to BOOTPROTO="dhcp". The ifcfg-ethX files have

to be created manually. They are required for bringing the interfaces up and down and attribute

the desired IP addresses.

4.3. Creating network-scripts

To spot the new interfaces, make sure the driver is unloaded first. To that point ifconfig -a |

grep HWaddr should display all Non-Chelsio interfaces whose drivers are loaded, whether the

interfaces are up or not.

[root@host~]# ifconfig -a | grep HWaddr

eth0 Link encap:Ethernet HWaddr 00:30:48:32:6A:AA

Then load the driver using the modprobe cxgb4 command (for the moment it does not make any

difference whether we are using NIC-only or the TOE-enabling driver). The output of ifconfig

should display the adapter interfaces as:

[root@host~]# ifconfig -a | grep HWaddr

eth0 Link encap:Ethernet HWaddr 00:30:48:32:6A:AA

eth1 Link encap:Ethernet HWaddr 00:07:43:04:6B:E9e

eth2 Link encap:Ethernet HWaddr 00:07:43:04:6B:F1

On earlier versions of RHEL the NETMASK attribute is named IPMASK. Make sure

you are using the right attribute name.

Note

If default option is selected in step ii, reboot the machine for changes to take effect. Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 37

For each interface you can write a configuration file in /etc/sysconfig/network-scripts.

The ifcfg-eth1 could look like:

file: /etc/sysconfig/network-scripts/ifcfg-eth1

DEVICE="eth1"

HWADDR=00:07:43:04:6B:E9

ONBOOT="yes"

NM_CONTROLLED="no"

BOOTPROTO="static"

IPADDR=10.192.167.112

NETMASK=255.255.240.0

From now on, the eth1 interface of the adapter can be brought up and down through the ifup

eth1 and ifdown eth1 commands respectively. Note that it is of course not compulsory to create

a configuration file for every interface if you are not planning to use them all.

4.4. Configuring IPv6

The interfaces should come up with a link-local IPv6 address for complete and fully functional

IPv6 configuration. Update the Interface network-script with ONBOOT="yes”.

4.5. Checking Link

Once the network-scripts are created for the interfaces you should check the link i.e. make sure

it is actually connected to the network. First, bring up the interface you want to test using ifup

eth1.

You should now be able to ping any other machine from your network provided it has ping

response enabled.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 38

 Performance Tuning

The following section lists the steps to tune the system for optimal performance.

5.1. Generic

• Install the adapter into a PCIe Gen3 x8/x16 slot. Ensure that T6 100G adapters are placed in

x16 slots and not in x8_in_x16 slots.

• Ensure that the system is populated with balanced memory configuration (Refer to the system

manual for the recommended configurations). At least one DIMM per channel should be

populated for maximum performance.

• BIOS settings:

1. Disable virtualization, c-state technology, VT-d, Intel I/O AT, and SR-IOV.

2. CPU Power setting to Performance.

• Turn off irqbalance.

[root@host~]# /etc/init.d/irqbalance stop

(or)

[root@host~]# systemctl stop irqbalance.service

5.2. Throughput

In addition to the generic settings,

• Add intel_pstate=disable processor.max_cstate=1 intel_idle.max_cstate=0 to the kernel

command line to prevent the system from entering power-saving/idle states and avoid

CPU frequency changes.

• Set the below tuned-adm profile:

[root@host~]# tuned-adm profile network-throughput

5.3. Latency

In addition to the generic settings,

• Disable Hyperthreading in BIOS.

• Add idle=poll to the kernel command line.

• Disable SELinux.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 39

• Set the below tuned-adm profile:

[root@host~]# tuned-adm profile network-latency

• Disable few services.

[root@host~]# t4_latencytune.sh <interface>

• Set sysctl param net.ipv4.tcp_low_latency to 1.

[root@host~]# sysctl -w net.ipv4.tcp_low_latency=1

To optimize your system for different protocols, refer to their respective chapters.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 40

 Software/Driver Update

For any distribution-specific problems, check README and Release Notes included in

the release for possible workarounds.

Visit the Chelsio Download Center for regular updates on various software/drivers. You can also

subscribe to our newsletter for the latest software updates.

https://service.chelsio.com/

Chelsio Unified Wire

Chelsio Unified Wire for Linux 41

 Software/Driver Uninstallation

Similar to installation, the Chelsio Unified Wire package can be uninstalled using two main

methods: from the source and RPM, based on the method used for installation. If you decide to

use source, you can uninstall the package using CLI or GUI mode.

7.1. Uninstalling Chelsio Unified Wire from source

 GUI mode (with Dialog utility)

1. Change your current working directory to the Chelsio Unified Wire package directory and run

the following script to start the GUI installer:

[root@host~]# ./install.py

2. Select uninstall, under Choose an action.

3. Select all to uninstall all the installed drivers, libraries, and tools or select custom to remove

specific components.

Chelsio Unified Wire

Chelsio Unified Wire for Linux 42

4. The selected components will now be uninstalled.

5. After successful uninstalltion, summary of the uninstalled components are displayed.

6. Select View log to view uninstallation log or Exit to continue.

7. Select Yes to exit the installer or No to go back.

Press Esc or Ctrl+C to exit the installer at any point of time.

Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 43

 CLI mode (without Dialog utility)

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Run the following script with –u option to uninstall the Unified Wire Package:

[root@host~]# ./install.py –u <target>

 iWARP driver uninstallation on Cluster nodes

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Uninstall iWARP drivers on multiple Cluster nodes.

[root@host~]# ./install.py -C -m <machinefilename> -u all

The above command will remove Chelsio iWARP (iw_cxgb4) and TOE (t4_tom) drivers from all

the nodes listed in the machinefilename file.

 CLI mode

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Uninstall using the following command:

[root@host~]# make uninstall

View help by typing [root@host~]# ./install.py –h for more information. Note

Chelsio Unified Wire

Chelsio Unified Wire for Linux 44

 CLI mode (individual drivers/software)

You can also choose to uninstall drivers/software individually. Provided here are steps to uninstall

some of them. For the complete list, view help by running make help.

Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

▪ To uninstall the NIC driver,

[root@host~]# make nic_uninstall

▪ To uninstall the offload driver,

[root@host~]# make toe_uninstall

▪ To uninstall the iWARP driver,

[root@host~]# make iwarp_uninstall

▪ To uninstall UDP Segmentation Offload driver,

[root@host~]# make udp_offload_uninstall

7.2. Uninstalling Chelsio Unified Wire from RPM

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x-<OS>-<arch>

2. Uninstall Unified Wire.

[root@host~]# ./uninstall.py

Chelsio Unified Wire

Chelsio Unified Wire for Linux 45

 iWARP driver uninstallation on Cluster nodes

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x-<OS>-<arch>

2. Uninstall iWARP drivers on multiple Cluster nodes.

[root@host~]# ./install.py -C -m <machinefilename> -u

The above command removes Chelsio iWARP (iw_cxgb4) and TOE (t4_tom) drivers from all the

nodes listed in the machinefilename file.

Network (NIC/TOE)

Chelsio Unified Wire for Linux 46

II. Network (NIC/TOE)

Network (NIC/TOE)

Chelsio Unified Wire for Linux 47

 Introduction

Chelsio’s Unified Wire adapters provide extensive support for NIC operation, including all

stateless offload mechanisms for both IPv4 and IPv6 (IP, TCP and UDP checksum offload, LSO

- Large Send Offload aka TSO - TCP Segmentation Offload, and assist mechanisms for

accelerating LRO - Large Receive Offload).

A high-performance fully offloaded and fully featured TCP/IP stack meets or exceeds software

implementations in RFC compliance. Chelsio’s Terminator engine provides unparalleled

performance through a specialized data flow processor implementation and a host of features

designed for high throughput and low latency in demanding conditions and networking

environments.TCP offload is fully implemented in the hardware, thus freeing the CPU from TCP/IP

overhead. The freed-up CPU resources can be used for other computing tasks. The TCP offload

in turn removes network bottlenecks and enables applications to take full advantage of the

networking capabilities.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 (Memory-free; 256 IPv4/128 IPv6 offload connections supported)

 T6225-SO-CR (Memory-free; 256 IPv4/128 IPv6 offload connections supported)

 T580-CR

 T580-LP-CR

 T580-SO-CR*

 T580-OCP-SO*

 T540-CR

 T540-LP-CR

 T540-SO-CR*

 T540-BT

 T520-CR

 T520-LL-CR

 T520-SO-CR*

 T520-OCP-SO*

Network (NIC/TOE)

Chelsio Unified Wire for Linux 48

 T520-BT

*Only NIC driver supported.

1.2. Software Requirements

 Linux Requirements

Currently, the Network driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Network (NIC/TOE)

Chelsio Unified Wire for Linux 49

 Software/Driver Installation

Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

• To build and install NIC only driver (without offload support),

[root@host~]# make nic_install

• To build and install drivers with offload support,

[root@host~]# make toe_install

Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Network (NIC/TOE)

Chelsio Unified Wire for Linux 50

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

3.1. Loading in NIC mode (without full offload support)

To load the Network driver without full offload support,

[root@host~]# modprobe cxgb4

3.2. Loading in TOE mode (with full offload support)

To enable full offload support,

[root@host~]# modprobe t4_tom

In VMDirect Path environment, it is recommended to load the offload driver using the following

command:

[root@host~]# modprobe t4_tom vmdirectio=1

Offload support needs to be enabled upon each reboot of the system. This can be

done manually as shown above.
Note

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Network (NIC/TOE)

Chelsio Unified Wire for Linux 51

 Software/Driver Configuration

4.1. Enabling TCP Offload

Load the offload drivers and bring up the Chelsio interface.

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig ethX <IP> up

All TCP traffic will be now offloaded over the Chelsio interface. To see the number of

connections offloaded, run the following command:

[root@host~]# cat /sys/kernel/debug/cxgb4/<bus-id>/tids

Where,

TID is the number of offload connections.

STID is the number of offload servers.

4.2. Enabling Busy waiting

Busy waiting/polling is a technique where a process repeatedly checks to see if an event has

occurred, by spinning in a tight loop. By using a similar technique, Linux kernel provides the ability

for the socket layer code to poll directly on an Ethernet device's Rx queue. This eliminates the

cost of interrupts and context switching, and with proper tuning allows to achieve latency

performance similar to that of hardware.

Chelsio's NIC and TOE drivers support this feature and can be enabled on the Chelsio supported

devices to attain improved latency.

To make use of BUSY_POLL feature, follow the steps mentioned below:

1. Enable BUSY_POLL support in kernel config file by setting CONFIG_NET_RX_BUSY_POLL=y.

Network (NIC/TOE)

Chelsio Unified Wire for Linux 52

2. Enable BUSY_POLL globally in the system by setting the values of following sysctl

parameters depending on the number of connections:

sysctl -w net.core.busy_read=<value>

sysctl -w net.core.busy_poll=<value>

Set the values of the above parameters to 50 for 100 or less connections, and 100 for more

than 100 connections.

4.3. Precision Time Protocol (PTP)

The Precision Time Protocol (PTP) standard defines a protocol for precise synchronization of a

clock between master and slave devices in a local area network. It can provide timing accuracies

in nanosecond units. The protocol is based on time stamping and measuring the send and receive

times. Most of the implementation relies on time stamping of the packets in the software which

reduces the accuracy of the time measured. One possible solution to this problem is time

stamping the packet in the NIC hardware itself.

Chelsio’s Terminator hardware provides many features to support PTP implementations:

• High precision timers which can be read through PIO registers.

• Wall clock time based on the time of the day.

• Time stamping of selected PTP packets on both ingress and egress direction.

 Synchronizing Clocks

ptp4l tool (installed during Unified Wire installation) is used to synchronise clocks.

1. Load the network driver on all master and slave nodes.

[root@host~]# modprobe cxgb4

2. Assign IP addresses and ensure that master and slave nodes are connected.

3. Start the ptp4l tool on a master using the Chelsio interface.

[root@host~]# ptp4l -i <interface> -H -m

 BUSY_POLL can also be enabled on a per-connection basis by making use of

SO_BUSY_POLL option in the socket application code. Refer socket man-page for

more details.

Note

This feature is not supported on RHEL6.X platforms. Important

Network (NIC/TOE)

Chelsio Unified Wire for Linux 53

4. Start the ptp4l tool on slave nodes.

[root@host~]# ptp4l -i <interface> -H -m -s

5. Synchronize the system clock to a PTP hardware clock (PHC) on slave nodes.

[root@host~]# phc2sys -s <interface> -c CLOCK_REALTIME -w -m

To view the complete list of available options, refer ptp4l help manual. Note

Network (NIC/TOE)

Chelsio Unified Wire for Linux 54

4.4. VXLAN Offload

Virtual Extensible LAN (VXLAN) is a network virtualization technique that uses overlay

encapsulation protocol to provide Ethernet Layer 2 network services with extended scalability and

flexibility. VXLAN extends the virtual LAN (VLAN) address space by adding a 24-bit segment ID

and increasing the number of available logical networks from 4096 to 16 million. Thereby

addressing the scalability and network segmentation issues associated with large cloud

computing deployments. Chelsio adapters are uniquely capable of offloading the processing of

VXLAN encapsulated frames such that all stateless offloads (checksums and TSO) are

preserved, resulting in significant performance benefits. This is enabled by default when loading

the driver.

 Host Configuration

1. Load the network driver and vxlan driver.

[root@host~]# modprobe cxgb4

[root@host~]# modprobe vxlan

2. Configure larger MTU on the Chelsio interface to accommodate the larger frame size due to

VXLAN encapsulation. Assign IP address and bring it up.

[root@host~]# ifconfig <interface> <IP address> mtu 1600 up

3. Create the VXLAN interface, with the required VNI, multicast group, port number, and flags.

IPv4

[root@host~]# ip link add <vxlan_interface> type vxlan id <vni> group

239.1.1.1 dev <interface> dstport 4789 noudpcsum

IPv6

[root@host~]# ip link add <vxlan_interface> type vxlan id <vni> group

ff08::114 dev <interface> dstport 4789 udp6zerocsumtx udp6zerocsumrx

4. Bring up the VXLAN interface.

[root@host~]# ifconfig <vxlan_interface> up

5. Create the bridge interface and bring it up.

[root@host~]# brctl addbr <bridge_interface>

[root@host~]# ifconfig <bridge_interface> up

6. Add the VXLAN interface to the bridge interface.

[root@host~]# brctl addif <bridge_interface> <vxlan_interface>

Network (NIC/TOE)

Chelsio Unified Wire for Linux 55

7. Tx UDP Tunnel Segmentation Offload will be enabled by default when loading the network

driver. To see the current settings,

[root@host~]# ethtool -k <interface>

...

tx-udp_tnl-segmentation: on

8. For better performance, configure the NIC settings of the Performance Tuning section.

 Guest (VM) Configuration

1. Open the Virtual Machine Manager.

[root@host~]# virt-manager

2. Add a Virtual Network Interface to the VM, by specifying the Bridge name configured in Step

5. of the Host Configuration section and Device Model as virtio.

3. Bring up the Virtual Network interface with the required IP address.

[root@host~]# ifconfig <virtual-interface> <IP address> up

For better performance, the following settings are recommended:

1. Increase the number of queues for the Virtual network interface to 8.

 [root@host~]# virsh edit <VM>

 </interface>

 <interface type='bridge'>

 <mac address='52:54:00:34:8a:4a'/>

 <source bridge='br0'/>

 <model type='virtio'/>

 <driver name='vhost' queues='8'/>

2. Map the Virtual CPUs of the VM to physical CPUs which will be free.

Example: On a machine with 16 cores, VM Virtual CPUs were pinned to physical cores 8-15,

leaving cores 0-7 to be utilized by the host.

[root@host~]# virsh edit <VM>

 <vcpu placement='static' cpuset='8-15'>8</vcpu>

Network (NIC/TOE)

Chelsio Unified Wire for Linux 56

3. Restart the libvirtd services and Virtual Machine Manager.

[root@host~]# systemctl restart libvirtd.service

[root@host~]# systemctl restart libvirt-guests.service

[root@host~]# virt-manager

4. Bind the Virtual Network Interface Queues to different CPUs.

5. Increase the TCP buffers by configuring the sysctl variables mentioned in NIC settings of the

Performance Tuning section.

4.5. HMA

To use HMA, ensure that Unified Wire is installed using the Unified Wire (Default) configuration

tuning option. Currently, 256 IPv4/128 IPv6 TOE connections are supported on T6 25G SO

adapters. The following image shows the HMA reserved memory.

The following image shows the number of TOE offloaded connections.

4.6. Performance Tuning

Apply the performance settings mentioned in the Performance Tuning section in the Unified Wire

chapter before proceeding.

 TOE

1. Run the performance tuning script to update few kernel parameters using sysctl and map TOE

queues to different CPUs.

[root@host~]# t4_perftune.sh -n -s -Q ofld

2. Disable Rx Coalesce and DDP using the following steps:

a. Create a COP policy.

[root@host~]# cat <policy_file>

all => offload !ddp !coalesce

Network (NIC/TOE)

Chelsio Unified Wire for Linux 57

b. Compile the policy.

[root@host~]# cop -d -o <policy_out> <policy_file>

c. Apply the policy.

[root@host~]# cxgbtool ethX policy <policy_out>

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

 NIC

1. Run the performance tuning script to update few kernel parameters using sysctl and map NIC

queues to different CPUs.

[root@host~]# t4_perftune.sh -n -s -Q nic

2. Enable adaptive-rx.

[root@host~]# ethtool -C enp2s0f4 adaptive-rx on

 NIC Latency

Enable BUSY_POLL feature.

[root@host~]# sysctl -w net.core.busy_poll=50

[root@host~]# sysctl -w net.core.busy_read=50

 TOE Latency

Set the below sysctl:

[root@host~]# sysctl -w toe.toeX_tom.recvmsg_spin_us=50

 Receiver Side Scaling (RSS)

The Receiver Side Scaling (RSS) enables the receiving network traffic to scale with the available

number of processors on a modern networked computer. RSS enables parallel receive

processing and dynamically balances the load among multiple processors. Chelsio’s network

controller fully supports Receiver Side Scaling for IPv4 and IPv6.

This script first determines the number of CPUs on the system and then each receiving queue is

bound to an entry in the system interrupt table and assigned to a specific CPU. Thus, each

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

Network (NIC/TOE)

Chelsio Unified Wire for Linux 58

receiving queue interrupts a specific CPU through a specific interrupt now. For example, on a 4-

core system, t4_perftune.sh gives the following output:

[root@host~]# t4_perftune.sh

Discovering Chelsio T4/T5 devices ...

Configuring Chelsio T4/T5 devices ...

Tuning eth7

IRQ table length 4

Writing 1 in /proc/irq/62/smp_affinity

Writing 2 in /proc/irq/63/smp_affinity

Writing 4 in /proc/irq/64/smp_affinity

Writing 8 in /proc/irq/65/smp_affinity

eth7 now up and tuned

...

Because there are 4 CPUs on the system, 4 entries of interrupts are assigned. For other network

interfaces, you should see the similar output message.

Now the receiving traffic is dynamically assigned to one of the system’s CPUs through a

Terminator queue. This achieves a balanced usage among all the processors. This can be

verified, for example, by using the iperf tool. First set up a server on the receiver host.

[root@receiver_host~]# iperf –s

Then on the sender host, send data to the server using the iperf client mode. To emulate a

moderate traffic workload, use -P option to request 20 TCP streams from the server.

[root@sender_host~]# iperf -c receiver_host_name_or_IP -P 20

Then on the receiver host, look at the interrupt rate at /proc/interrupts:

[root@receiver_host~]# cat /proc/interrupts | grep eth6

Id CPU0 CPU1 CPU2 CPU3 type interface

36: 115229 0 0 1 PCI-MSI-edge eth6 (queue 0)

37: 0 121083 1 0 PCI-MSI-edge eth6 (queue 1)

38: 0 0 105423 1 PCI-MSI-edge eth6 (queue 2)

39: 0 0 0 115724 PCI-MSI-edge eth6 (queue 3)

Now interrupts from eth6 are evenly distributed among the 4 CPUs.

Without Terminator’s RSS support, the interrupts caused by network traffic may be distributed

unevenly over CPUs. For your information, the traffic produced by the same iperf commands

gives the following output in /proc/interrupts.

[root@receiver_host~]# cat /proc/interrupts | grep eth6

Id CPU0 CPU1 CPU2 CPU3 type interface

36: 0 9 0 17418 PCI-MSI-edge eth6 (queue 0)

37: 0 0 21718 2063 PCI-MSI-edge eth6 (queue 1)

38: 0 7 391519 222 PCI-MSI-edge eth6 (queue 2)

39: 1 0 33 17798 PCI-MSI-edge eth6 (queue 3)

Network (NIC/TOE)

Chelsio Unified Wire for Linux 59

Here there are 4 receiving queues from the eth6 interface, but they are not bound to a specific

CPU or interrupt entry. Queue 2 has caused a very large number of interrupts on CPU2 while

CPU0 and CPU1 are barely used by any of the four queues. Enabling RSS is thus essential for

best performance.

 Interrupt Coalescing

The idea behind Interrupt Coalescing (IC) is to avoid flooding the host CPUs with too many

interrupts. Instead of throwing one interrupt per incoming packet, IC waits for ‘n’ packets to be

available in the Rx queues and placed into the host memory through DMA operations before an

interrupt is thrown, reducing the CPU load and thus improving latency. It can be changed using

the following command:

[root@host~]# ethtool –C ethX rx-frames n

 Generic Receive Offload

Generic Receive Offload (GRO) is a performance improvement feature at the receiving side. It

aggregates the received packets that belong to the same stream and combines them to form a

larger packet before pushing them to the receive host network stack. By doing this, rather than

processing every small packet, the receiver CPU works on fewer packet headers but with the

same amount of data. This helps to reduce the receive host CPU load and improve throughput in

a 10/25/40/50/100Gb network environment where CPU can be the bottleneck. It is available from

kernel 2.6.29 onwards.

Chelsio’s card supports both hardware assisted GRO and Linux-based GRO. t4_tom is the

kernel module that enables the hardware assisted GRO. If it is not already in the kernel module

list, use the following command to insert it:

[root@host~]# lsmod | grep t4_tom

[root@host~]# modprobe t4_tom

[root@host~]# lsmod | grep t4_tom

t4_tom 88378 0 [permanent]

toecore 21618 1 t4_tom

cxgb4 225342 1 t4_tom

Then Terminator’s hardware GRO implementation is enabled.

Linux’s irqbalance may take charge of distributing interrupts among CPUs on a

multiprocessor platform. However, irqbalance distributes interrupt requests from all

hardware devices across processors. For a server with Chelsio network card

constantly receiving large volume of data at 10/25/40/50/100 Gbps, the network

interrupt demands are significantly high. Under such circumstances, it is necessary

to enable RSS to balance the network load across multiple processors and achieve

the best performance.

Note

For more information, run the following command:
[root@host~]# ethtool -h

Note

Network (NIC/TOE)

Chelsio Unified Wire for Linux 60

If you would like to use the Linux GRO for any reason, first the t4_tom kernel module needs to

be removed from kernel module list. Note that you might need to reboot your system. After

removing the t4_tom module, you can use ethtool to check the status of the current GRO

settings.

[root@host~]# ethtool -k eth6

Offload parameters for eth6:

rx-checksumming: on

tx-checksumming: on

scatter-gather: on

tcp-segmentation-offload: on

udp-fragmentation-offload: off

generic-segmentation-offload: on

generic-receive-offload: on

large-receive-offload: off [fixed]

Note that generic-receive-offload option is ON. This means GRO is enabled. When GRO is

enabled, Chelsio’s driver provides the following GRO-related statistics:

[root@host~]# ethtool -S eth6

...

GROPackets : 0

GROMerged : 897723

...

GROPackets is the number of held packets. Those are candidate packets held by the kernel to

be processed individually or to be merged into larger packets. By default, this number is zero.

GROMerged is the number of packets that are merged to larger packets. Usually, this number

increases if there is any continuous traffic stream present.

ethtool can also be used to switch off the GRO options when necessary.

[root@host~]# ethtool -K eth6 gro off

[root@host~]# ethtool -k eth6

Offload parameters for eth6:

rx-checksumming: on

tx-checksumming: on

scatter-gather: on

tcp-segmentation-offload: on

udp-fragmentation-offload: off

generic-segmentation-offload: on

generic-receive-offload: off

large-receive-offload: off [fixed]

The output above shows a disabled GRO.

Note that if your Linux system has IP forwarding enabled. That is acting as a bridge or router, the

GRO needs to be disabled. This is due to a known kernel issue.

Network (NIC/TOE)

Chelsio Unified Wire for Linux 61

 Software/Driver Unloading

5.1. Unloading the NIC Driver

To unload the NIC driver,

[root@host~]# rmmod cxgb4

5.2. Unloading the TOE Driver

A reboot is required to unload the TOE driver. To avoid rebooting, follow the below steps:

1. Load t4_tom driver with unsupported_allow_unload parameter.

[root@host~]# modprobe t4_tom unsupported_allow_unload=1

2. Stop all the offloaded traffic, servers, and connections. Check for the reference count.

[root@host~]# cat /sys/module/t4_tom/refcnt

If the reference count is 0, the driver can be directly unloaded. Skip to step 3.

If the count is non-zero, load a COP policy which disables offload using the following procedure:

a. Create a policy file which disables offload.

[root@host~]# cat policy_file

all => !offload

b. Compile and apply the output policy file.

[root@host~]# cop –o no-offload.cop policy_file

[root@host~]# cxgbtool ethX policy no-offload.cop

3. Unload the driver.

[root@host~]# rmmod t4_tom

[root@host~]# rmmod toecore

[root@host~]# rmmod cxgb4

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 62

III. Virtual Function Network (vNIC)

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 63

 Introduction

The ever-increasing network infrastructure of IT enterprises has led to a phenomenal increase in

maintenance and operational costs. IT managers are forced to acquire more physical servers and

other data center resources to satisfy storage and network demands. To solve the Network and

I/O overhead, users are opting for server virtualization which consolidates I/O workloads onto

lesser physical servers thus resulting in efficient, dynamic, and economical data center

environments. Other benefits of Virtualization include improved disaster recovery, server

portability, cloud computing, Virtual Desktop Infrastructure (VDI), etc.

Chelsio’s Unified Wire family of adapters deliver increased bandwidth, lower latency, and lower

power with virtualization features to maximize cloud scaling and utilization. The adapters also

provide full support for PCI-SIG SR-IOV to improve I/O performance on a virtualized system.

Users can configure up to 64 Virtual and 8 Physical functions (with 4 PFs as SR-IOV capable)

along with 336 virtual MAC addresses.

1.1. Hardware Requirements

 Supported adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR

 T62100-SO-OCP3

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3

 T6225-SO-CR

 T580-CR

 T580-LP-CR

 T580-SO-CR

 T580-OCP-SO

 T540-CR

 T540-LP-CR

 T540-SO-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-SO-CR

 T520-OCP-SO

 T520-BT

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 64

1.2. Software Requirements

 Linux Requirements

Currently, the Virtual Function Network driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 65

 Software/Driver Installation

The Virtual Function implementation for Chelsio adapters comprises of two modules:

• Standard NIC driver module, cxgb4, which runs on base Hypervisor and is responsible for

instantiation and management of the PCIe Virtual Functions (VFs) on the adapter.

• VF NIC driver module, cxgb4vf, which runs on Virtual Machine (VM) guest OS using VFs

attached through Hypervisor VM initiation commands.

2.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• PCI Express Slot should be ARI capable.

• SR-IOV should be enabled in the machine.

• Intel Virtualization Technology for Directed I/O (VT-d) should be enabled in the BIOS.

• Add intel_iommu=on to the kernel command line in grub/grub2 menu, to use VFs in VMs.

2.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. On the host, install network driver.

[root@host~]# make nic_install

3. On the guest (VM), install vNIC driver.

[root@host~]# make vnic_install

4. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 66

 Software/Driver Loading

3.1. Instantiate Virtual Functions (SR-IOV)

To instantiate Virtual Functions (VFs) on the host, run the following commands:

[root@host~]# modprobe cxgb4

[root@host~]# echo n >

/sys/class/net/ethX/device/driver/<bus_id>/sriov_numvfs

Here, ethX is the interface and n specifies the number of VFs to be instantiated per physical

function (bus_id). VFs can be instantiated only from PFs 0 - 3 of the Chelsio adapter. A maximum

of 64 virtual functions can be instantiated with 16 virtual functions per physical function.

Example: Instantiating 16 VFs on PF3 of Chelsio adapter.

Unload the vNIC driver on the host (if loaded).

[root@host~]# rmmod cxgb4vf

The virtual functions can now be assigned to virtual machines (guests).

3.2. Loading the Driver

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The vNIC driver must be loaded on the Guest OS by the root user. Any attempt to load the driver

as a regular user will fail.

To load the driver, run the following command:

[root@host~]# modprobe cxgb4vf

To get familiar with physical and virtual function terminologies, refer to the PCI

Express specification.
Note

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 67

 Software/Driver Configuration and Fine-tuning

4.1. VF Communication

Once the VF driver (cxgb4vf) is loaded in the VM and the VF interface is up with an IP address,

it can communicate (send/receive network traffic).

 [root@host~]# modprobe cxgb4vf

 [root@host~]# ifconfig ethX <IP Address> up

2-port card

VFs of PF0 and PF2 can communicate with each other and with hosts connected to Port 0.

VFs of PF1 and PF3 can communicate with each other and with hosts connected to Port 1.

4-port card

VFs of PF0 can communicate with each other and with hosts connected to Port 0.

VFs of PF1 can communicate with each other and with hosts connected to Port 1.

VFs of PF2 can communicate with each other and with hosts connected to Port 2.

VFs of PF3 can communicate with each other and with hosts connected to Port 3.

By default, the VFs (in VM) can not communicate with PFs (on Host). To enable this
communication, set ethtool private flag port_tx_vm_wr for PF interface (on Host).

 [root@host~]# ethtool --set-priv-flags ethX port_tx_vm_wr on

Example:

1. 1 VF was instantiated on PF0.

[root@host~]# modprobe cxgb4

[root@host~]# echo 1 >

/sys/class/net/eth1/device/driver/0000\:01\:00.0/sriov_numvfs

[root@host~]# rmmod cxgb4vf

2. ethtool private flag was set on the Host and PF interface was brought up on the Host.

[root@host~]# ethtool --set-priv-flags eth1 port_tx_vm_wr on

[root@host~]# ifconfig eth1 10.1.1.2/24 up

3. VF was assigned to a VM. VF was brought up in the VM.

 [root@VM ~]# modprobe cxgb4vf

 [root@VM ~]# ifconfig eth2 10.1.1.3/24 up

VF will be able to commincate with PF interface on the host.

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 68

4.2. VF Link state

VF link state depends on the physical port link status to which the VF is mapped to. Refer to the

above section for VF to physical port mappings. To override this and always enable the VF link,

follow the below procedure. This enables VF to VF communication irrespective of the physical

port link status.

1. After instantiating the VFs, check the current VF link state using the below command on

Host (hypervisor). By default, it will be auto.

[root@host~]# ip link show mgmtpfX,Y

2. Enable the VF link state for the required VFs.

[root@host~]# ip link set dev mgmtpfX,Y vf Z state enable

3. The VFs can then be assigned to Virtual Machines. On loading cxgb4vf driver in the VM and

bringing up the VF interface, the VF will be enabled. It can then communicate with other VFs

(which are enabled) irrespective of physical link.

To revert to the default behaviour, set the VF link state to auto.

[root@host~]# ip link set dev mgmtpfX,Y vf Z state auto

4.3. VF Rate Limiting

This section describes the method to rate-limit traffic passing through virtual functions (VFs).

1. The VF rate limit needs to be set on the Host (hypervisor). Apply rate-limiting using:

[root@host~]# ip link set dev mgmtpfXX vf <vf_number> rate <rate_in_mbps>

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 69

Here,

• mgmtpfXX is the management interface to be used. For each PF on which VFs are

instantiated, 1 management interface will be created (in "ifconfig -a").

• vf_number is the VF on which rate-limiting is applied. Value 0-15.

2. Run traffic over the VF (using kernel mode cxgb4vf or DPDK PMD) and the throughput

should be rate-limited as per the values set in the previous step.

Example:

1. Four VFs are instantiated on PF0.

[root@host~]# modprobe cxgb4

[root@host~]# echo 4 >

/sys/class/net/ethX/device/driver/<bus_id>/sriov_numvfs

2. Two VMs are configured with two VFs each. Two different networks are configured with the

following IP configuration:

VM0: VF0 (102.1.1.2/24), VF1 (102.2.2.2/24)

VM1: VF2 (102.1.1.3/24), VF3 (102.2.2.3/24)

3. VF Rate-limiting is configured on the host.

[root@host~]# ip link set dev mgmtpf10 vf 0 rate 2000

[root@host~]# ip link set dev mgmtpf10 vf 1 rate 3000

The traffic on 102.1.1.X network will be rate-limited to 2Gbps whereas, traffic on 102.2.2.X

network will be rate-limited to 3Gbps.

4.4. Bonding

The VF network interfaces (assigned to a VM) can be aggregated into a single logical bonded

interface effectively combining the bandwidth into a single connection. It also provides

redundancy in case one of the link fails. Execute the following steps in the VM (attached with

more than 1 VF interface):

1. Load the Virtual Function network driver.

[root@host~]# modprobe cxgb4vf

2. Create a bond interface.

[root@host~]# modprobe bonding mode=<bonding mode> <optional parameters>

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 70

3. Bring up the bond interface and enslave the VF interfaces to the bond.

[root@host~]# ifconfig bond0 up

[root@host~]# ifenslave bond0 ethX ethY

4. Assign IPv4/IPv6 address to the bond interface.

[root@host~]# ifconfig bond0 X.X.X.X/Y

[root@host~]# ifconfig bond0 inet6 add <128-bit IPv6 Address> up

Example:

1. Two VFs are instantiated each on PF0 (Port 0) and PF1 (Port 1) on the host.

[root@host~]# modprobe cxgb4

[root@host~]# echo 2 >

/sys/class/net/eth4/device/driver/0000\:01\:00.0/sriov_numvfs

[root@host~]# echo 2 >

/sys/class/net/eth4/device/driver/0000\:01\:00.1/sriov_numvfs

2. One VM was configured with VF0 of PF0 and VF1 of PF1.

[root@host~]# modprobe cxgb4vf force_link_up=0

[root@host~]# ifconfig enp8s1

enp8s1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

ether 06:44:3c:a8:40:00 txqueuelen 1000 (Ethernet)

[root@host~]# ifconfig enp8s1f5d1

enp8s1f5d1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

ether 06:44:3c:a8:40:11 txqueuelen 1000 (Ethernet)

3. Bonding mode=1 was configured in the VM.

[root@host~]# modprobe bonding mode=1 miimon=100

[root@host~]# ifconfig bond0 up

[root@host~]# ifenslave bond0 enp8s1 enp8s1f5d1

[root@host~]# ifconfig bond0 10.1.1.223/24

The traffic will run over the bond interface in Active-Backup mode. If the link fails on enp8s1, the

traffic will failover to enp8s1f5d1.

ethX and ethY are the VF interfaces attached to the same VM. It is recommended

to use VFs of different Ports to achieve redundancy in case of link failures.

Note

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 71

4.5. High Capacity VF Configuration

Chelsio adapters by default support 16 VFs per PF. To use more VFs per PF, follow the below

steps on the host:

1. Change your current working directory to the Chelsio Unified Wire package directory and

install the driver.

[root@host~]# cd ChelsioUwire-x.x.x.x

[root@host~]# make CONF=HIGH_CAPACITY_VF install

2. Update the adapter configuration and reboot the machine.

[root@host~]# chelsio_adapter_config.py

Chelsio adapter detected

|------------------------------------|

| Choose Chelsio card: |

| 1. T580_SO_CR 3:0.0 |

| 2. T6225_SO 4:0.0 |

|------------------------------------|

Select card: 2

Card T6225_SO(4:0.0) selected

|------------------------------------|

| Choose option |

| 1. Change to Default settings |

| 2. Change Adapter Config settings |

|------------------------------------|

Select option: 2

Changing Adapter Config settings

|------------------------------------|

| Possible Chelsio adapter settings: |

| 1: 248 VFs mode |

|------------------------------------|

248 VF setting selected

3. Instantiate virtual functions.

[root@host~]# modprobe cxgb4

[root@host~]# echo n >

/sys/class/net/ethX/device/driver/<bus_id>/sriov_numvfs

• 124 virtual functions can be instantiated on T5 adapter, with 31 virtual functions per

physical function pf {0..3}.

• 248 virtual functions can be instantiated on T6 adapter, with 62 virtual functions per

physical function pf {0..3}.

4. Unload the vNIC driver on the host (if loaded).

[root@host~]# rmmod cxgb4vf

This feature is currently supported only on T6225-SO-CR adapter. Important

For more installation options, run make help or install.py -h. Note

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 72

5. The virtual functions can now be assigned to virtual machines (guests).

6. For each PF on which VFs are instantiated, one management interface (mgmtpfX,Y) will

be created. You can see them using ip link show command.

 [root@host ~]# ip link show

14: mgmtpf1,0: <NOARP> mtu 0 qdisc noop state DOWN mode DEFAULT qlen 1

link/none

vf 0 MAC 06:44:3c:b1:00:00, link-state auto

15: mgmtpf1,1: <NOARP> mtu 0 qdisc noop state DOWN mode DEFAULT qlen 1

link/none

vf 0 MAC 06:44:3c:b1:80:10, link-state auto

16: mgmtpf1,2: <NOARP> mtu 0 qdisc noop state DOWN mode DEFAULT qlen 1

link/none

vf 0 MAC 06:44:3c:b1:80:20, link-state auto

17: mgmtpf1,3: <NOARP> mtu 0 qdisc noop state DOWN mode DEFAULT qlen 1

link/none

vf 0 MAC 06:44:3c:b1:80:30, link-state auto

7. To set a VLAN ID on Virtual Function,

[root@host ~]# ip link set <mgmtpfX,Y> vf <vf_index> vlan <vlan_id>

Example: The below command will set VLAN ID 20 to VF0 device instantiated on PF0 function.

[root@host ~]# ip link set mgmtpf1,0 vf 0 vlan 20

8. To set a MAC address on the Virtual Function,

[root@host ~]# ip link set <mgmtpfX,Y> vf <vf_index> mac <vnic_mac>

Example:

[root@host ~]# ip link set mgmtpf1,0 vf 0 mac 06:44:3c:11:22:33

The VF driver (cxgb4vf) needs to be reloaded on the VM for the new settings

(VLAN or MAC address) to take effect.
Note

Virtual Function Network (vNIC)

Chelsio Unified Wire for Linux 73

 Software/Driver Unloading

5.1. Unloading the Driver

The vNIC driver must be unloaded on the Guest OS by the root user. Any attempt to unload the

driver as a regular user may fail.

To unload the driver, execute the following command:

[root@host~]# rmmod cxgb4vf

iWARP RDMA Offload

Chelsio Unified Wire for Linux 74

IV. iWARP RDMA Offload

iWARP RDMA Offload

Chelsio Unified Wire for Linux 75

 Introduction

Chelsio’s Terminator engine implements a feature rich RDMA implementation which adheres to

the IETF standards with optional markers and MPA CRC-32C.

The iWARP RDMA operation benefits from the virtualization, traffic management, and QoS

mechanisms provided by the Terminator engine. It is possible to ACL process iWARP RDMA

packets. It is also possible to rate control the iWARP traffic on a per-connection or per-class basis,

and to give higher priority to QPs that implement distributed locking mechanisms. The iWARP

operation also benefits from the high-performance and low latency TCP implementation in the

offload engine.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 (Memory-free; 256 IPv4/128 IPv6 offload connections supported)

 T6225-SO-CR (Memory-free; 256 IPv4/128 IPv6 offload connections supported)

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the iWARP RDMA Offload driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

iWARP RDMA Offload

Chelsio Unified Wire for Linux 76

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

iWARP RDMA Offload

Chelsio Unified Wire for Linux 77

 Software/Driver Installation

2.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• Uninstall any OFED present in the machine.

• The rdma-core-devel package should be installed on RHEL/Rocky/AlmaLinux 9.X/8.X/7.X

and SLES 15 SP4 systems.

2.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install iWARP drivers and libraries.

[root@host~]# make iwarp_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h Note

iWARP RDMA Offload

Chelsio Unified Wire for Linux 78

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

3.1. Loading iWARP Driver

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

To load the iWARP driver, load the NIC driver and core RDMA drivers first. Run the following

commands:

[root@host~]# modprobe cxgb4

[root@host~]# modprobe iw_cxgb4

[root@host~]# modprobe rdma_ucm

Optionally, you can start the iWARP Port Mapper daemon to enable port mapping.

[root@host~]# iwpmd

Ensure that all inbox drivers are unloaded before proceeding with the unified

wire drivers.
Important

iWARP RDMA Offload

Chelsio Unified Wire for Linux 79

 Software/Driver Configuration and Fine-tuning

4.1. Testing connectivity with ping and rping

Load the NIC, iWARP and core RDMA modules as mentioned in the Software/Driver Loading

section. After which, you will see two or four ethernet interfaces for the Terminator device.

Configure them with an appropriate ip address, netmask, etc. You can use the Linux ping

command to test basic connectivity through the Terminator interface. To test RDMA, use the rping

command that is included in the librdmacm-utils RPM.

Run the following command on the server machine:

[root@host~]# rping -s -a server_ip_addr -p 9999

Run the following command on the client machine:

[root@host~]# rping -c –Vv -C10 -a server_ip_addr -p 9999

You should see ping data like this on the client:

ping data: rdma-ping-0: ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqr

ping data: rdma-ping-1: BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrs

ping data: rdma-ping-2: CDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrst

ping data: rdma-ping-3: DEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu

ping data: rdma-ping-4: EFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuv

ping data: rdma-ping-5: FGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvw

ping data: rdma-ping-6: GHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwx

ping data: rdma-ping-7: HIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxy

ping data: rdma-ping-8: IJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz

ping data: rdma-ping-9: JKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyzA

client DISCONNECT EVENT...

iWARP RDMA Offload

Chelsio Unified Wire for Linux 80

4.2. Enabling various MPIs

 Setting shell for Remote Login

User needs to set up authentication on the user account on all systems in the cluster to allow the

user to remotely log on or executing commands without a password.

Quick steps to set up user authentication:

1. Change to user home directory.

[root@host~]# cd

2. Generate authentication key.

[root@host~]# ssh-keygen -t rsa

3. Hit [Enter] upon prompting to accept the default setup and empty password phrase.

4. Create an authorization file.

[root@host~]# cd .ssh

[root@host~]# cat *.pub > authorized_keys

[root@host~]# chmod 600 authorized_keys

5. Copy directory .ssh to all systems in the cluster.

[root@host~]# cd

[root@host~]# scp -r /root/.ssh remotehostname-or-ipaddress:

 Configuration of various MPIs (Installation and Setup)

 Intel-MPI

1. Download the latest Intel MPI from the Intel website.

2. Copy the license file (.lic file) into l_mpi_p_x.y.z directory.

3. Create machines. LINUX (list of node names) in l_mpi_p_x.y.z

4. Select advanced options during installation and register the MPI.

5. Install the software on every node.

[root@host~]# ./install.py

iWARP RDMA Offload

Chelsio Unified Wire for Linux 81

6. Set IntelMPI with mpi-selector (do this on all nodes).

[root@host~]# mpi-selector --register intelmpi --source-dir

/opt/intel/impi/3.1/bin/

[root@host~]# mpi-selector --set intelmpi

7. Edit .bashrc and add these lines:

export RSH=ssh

export DAPL_MAX_INLINE=64

export I_MPI_DEVICE=rdssm:chelsio

export MPIEXEC_TIMEOUT=180

export MPI_BIT_MODE=64

8. Log out and log in again.

9. Populate mpd.hosts with node names.

10. Contact Intel to obtain their MPI with DAPL support.

11. To run Intel MPI over RDMA interface, DAPL 2.0 should be set up as follows:

Enable the Chelsio device by adding an entry at the beginning of the /etc/dat.conf file for

the Chelsio interface. For instance, if your Chelsio interface name is eth2, then the following

line adds a DAT version 2.0 device named “chelsio2" for that interface:

chelsio2 u2.0 nonthreadsafe default libdaplofa.so.2 dapl.2.0 "eth2 0" ""

 Open MPI (Installation and Setup)

Open MPI iWARP support is only available in Open MPI version 1.3 or greater.

Open MPI will work without any specific configuration through the openib btl. Users wishing to

performance tune the configurable options may wish to inspect the receive queue values. Those

can be found in the Chelsio T4 section of mca-btl-openib-device-params.ini. Follow the

steps mentioned below to install and configure Open MPI.

1. If not already done, install the mpi-selector tool.

2. Download the latest stable/feature version of openMPI from OpenMPI website.

• The hosts in this file should be Chelsio interface IP addresses.

• I_MPI_DEVICE=rdssm:chelsio assumes you have an entry in

/etc/dat.conf named chelsio.

• MPIEXEC_TIMEOUT value might be required to increase if heavy traffic is

going across the systems.

Note

http://www.open-mpi.org/

iWARP RDMA Offload

Chelsio Unified Wire for Linux 82

3. Extract it and change your current working directory to openMPI package directory.

4. Configure and install as:

[root@host~]#./configure --with-openib=/usr CC=gcc CXX=g++ F77=gfortran

FC=gfortran --enable-mpirun-prefix-by-default --prefix=/usr/mpi/gcc/openmpi-

x.y.z/ --with-openib-libdir=/usr/lib64/ --libdir=/usr/mpi/gcc/openmpi-

x.y.z/lib64/ --with-contrib-vt-flags=--disable-iotrace

[root@host~]# make

[root@host~]# make install

The above step installs openMPI in /usr/mpi/gcc/openmpi-x.y.z/

5. Next, create a shell script, mpivars.csh, with the following entry:

path

if ("" == "`echo $path | grep /usr/mpi/gcc/openmpi-x.y.z/bin`") then

 set path=(/usr/mpi/gcc/openmpi-x.y.z/bin $path)

endif

LD_LIBRARY_PATH

if ("1" == "$?LD_LIBRARY_PATH") then

 if ("$LD_LIBRARY_PATH" !~ */usr/mpi/gcc/openmpi-x.y.z/lib64*) then

 setenv LD_LIBRARY_PATH /usr/mpi/gcc/openmpi-

x.y.z/lib64:${LD_LIBRARY_PATH}

 endif

else

 setenv LD_LIBRARY_PATH /usr/mpi/gcc/openmpi-x.y.z/lib64

endif

MPI_ROOT

setenv MPI_ROOT /usr/mpi/gcc/openmpi-x.y.z

To enable multithreading, add “--enable-mpi-thread-multiple” and

“--with-threads=posix” parameters to the above configure command.
Note

iWARP RDMA Offload

Chelsio Unified Wire for Linux 83

6. Simlarly, create an another shell script, mpivars.sh, with the following entry:

PATH

if test -z "`echo $PATH | grep /usr/mpi/gcc/openmpi-x.y.z/bin`"; then

 PATH=/usr/mpi/gcc/openmpi-x.y.z/bin:${PATH}

 export PATH

fi

LD_LIBRARY_PATH

if test -z "`echo $LD_LIBRARY_PATH | grep

/usr/mpi/gcc/openmpi- x.y.z/lib64`"; then

 LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi- x.y.z/lib64${LD_LIBRARY_PATH:+:}$

{LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH

fi

MPI_ROOT

MPI_ROOT=/usr/mpi/gcc/openmpi-x.y.z

export MPI_ROOT

7. Next, copy the two files created in steps (v) and (vi) to /usr/mpi/gcc/openmpi-x.y.z/bin and

/usr/mpi/gcc/openmpi-x.y.z/etc

8. Register OpenMPI with MPI-selector.

[root@host~]# mpi-selector --register openmpi --source-dir

/usr/mpi/gcc/openmpi-x.y.z/bin

9. Verify if it is listed in mpi-selector.

[root@host~]# mpi-selector --l

10. Set OpenMPI.

[root@host~]# mpi-selector --set openmpi –yes

11. Log out and log in again.

iWARP RDMA Offload

Chelsio Unified Wire for Linux 84

 MVAPICH2 (Installation and Setup)

1. Download the latest MVAPICH2 software package from http://mvapich.cse.ohio-state.edu/
2. Extract it and change your current working directory to MVAPICH2 package directory.

3. Configure and install as:

[root@host~]# ./configure --prefix=/usr/mpi/gcc/mvapich2-x.y/ --with-

device=ch3:mrail --with-rdma=gen2 --enable-shared --with-ib-

libpath=/usr/lib64/ -enable-rdma-cm --libdir=/usr/mpi/gcc/mvapich2-x.y/lib64

[root@host~]# make

[root@host~]# make install

The above step will install MVAPICH2 in /usr/mpi/gcc/mvapich2-x.y/

4. Next, create a shell script and mpivars.csh with the following entry:

path

if ("" == "`echo $path | grep /usr/mpi/gcc/mvapich2-x.y/bin`") then

 set path=(/usr/mpi/gcc/mvapich2-x.y/bin $path)

endif

LD_LIBRARY_PATH

if ("1" == "$?LD_LIBRARY_PATH") then

 if ("$LD_LIBRARY_PATH" !~ */usr/mpi/gcc/mvapich2-x.y/lib64*) then

 setenv LD_LIBRARY_PATH /usr/mpi/gcc/mvapich2-

x.y/lib64:${LD_LIBRARY_PATH}

 endif

else

 setenv LD_LIBRARY_PATH /usr/mpi/gcc/mvapich2-x.y/lib64

endif

MPI_ROOT

setenv MPI_ROOT /usr/mpi/gcc/mvapich2-x.y

http://mvapich.cse.ohio-state.edu/

iWARP RDMA Offload

Chelsio Unified Wire for Linux 85

5. Simlarly, create another shell script, mpivars.sh, with the following entry:

PATH

if test -z "`echo $PATH | grep /usr/mpi/gcc/ mvapich2-x.y/bin`"; then

 PATH=/usr/mpi/gcc/mvapich2-x.y/bin:${PATH}

 export PATH

fi

LD_LIBRARY_PATH

if test -z "`echo $LD_LIBRARY_PATH | grep /usr/mpi/gcc/mvapich2-

x.y/lib64`"; then

 LD_LIBRARY_PATH=/usr/mpi/gcc/mvapich2-

x.y/lib64${LD_LIBRARY_PATH:+:}${LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH

fi

MPI_ROOT

MPI_ROOT=/usr/mpi/gcc/mvapich2-x.y

export MPI_ROOT

6. Next, copy the two files created in steps 4 and 5 to /usr/mpi/gcc/mvapich2-x.y/bin and

/usr/mpi/gcc/mvapich2-x.y/etc

7. Add the following entries in .bashrc file:

export MVAPICH2_HOME=/usr/mpi/gcc/mvapich2-x.y/

export MV2_USE_IWARP_MODE=1

export MV2_USE_RDMA_CM=1

8. Register MPI.

[root@host~]# mpi-selector --register mvapich2 --source-dir

/usr/mpi/gcc/mvapich2-x.y/bin/

9. Verify if it is listed in mpi-selector.

[root@host~]# mpi-selector --l

iWARP RDMA Offload

Chelsio Unified Wire for Linux 86

10. Set MVAPICH2.

[root@host~]# mpi-selector --set mvapich2 –yes

11. Log out and log in again.

12. Populate mpd.hosts with node names.

13. On each node, create /etc/mv2.conf with a single line containing the IP address of the local

adapter interface. This is how MVAPICH2 picks which interface to use for RDMA traffic.

 Building MPI Tests

1. Download Intel’s MPI Benchmarks from http://software.intel.com/en-us/articles/intel-mpi-

benchmarks

2. Extract it and change your current working directory to src directory.

3. Edit make_mpich file and set MPI_HOME variable to the MPI which you want to build the

benchmarks tool against. For example, for openMPI-1.6.4 set the variable as:

MPI_HOME=/usr/mpi/gcc/openmpi-1.6.4/

4. Next, build and install the benchmarks using:

[root@host~]# gmake -f make_mpich

The above step will install IMB-MPI1, IMB-IO and IMB-EXT benchmarks in the current working

directory (that is src).

5. Change your working directory to the MPI installation directory. For OpenMPI, it will be

/usr/mpi/gcc/openmpi-x.y.z/

6. Create a directory called tests and then another directory called imb under tests.

7. Copy the benchmarks built and installed in step 4 to the imb directory.

8. Follow steps 5, 6, and 7 for all the nodes.

 Running MPI Applications

• Run Intel MPI applications as:

mpdboot -n <no_of_nodes_in_cluster> -r ssh

mpdtrace

mpiexec -ppn -n 2 /opt/intel/impi/3.1/tests/IMB-3.1/IMB-MPI1

http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/articles/intel-mpi-benchmarks

iWARP RDMA Offload

Chelsio Unified Wire for Linux 87

The performance is best with NIC MTU set to 9000 bytes.

• Run Open MPI application as:

mpirun --host node1,node2 -mca btl openib,sm,self /usr/mpi/gcc/openmpi-

x.y.z/tests/imb/IMB-MPI1

The RDMA CM returned an event error while attempting to make a connection.

This type of error usually indicates a network configuration error.

Local host: core96n3.asicdesigners.com

Local device: Unknown

Error name: RDMA_CM_EVENT_ADDR_ERROR

Peer: core96n8

Workaround: Increase the OpenMPI rdma route resolution timeout. The default is 1000, or

1000ms. Increase it to 30000 with this parameter:

--mca btl_openib_connect_rdmacm_resolve_timeout 30000

• Run MVAPICH2 application as:

mpirun_rsh -ssh -np 8 -hostfile mpd.hosts $MVAPICH2_HOME/tests/imb/IMB-MPI1

For OpenMPI/RDMA clusters with node counts greater than or equal to 8 nodes, and

process counts greater than or equal to 64, you may experience the following RDMA

address resolution error when running MPI jobs with the default OpenMPI settings:

Note

openmpi-1.4.3 can cause IMB benchmark stalls due to a shared memory BTL

issue. This issue is fixed in openmpi-1.4.5 and later releases. Hence, it is

recommended that you download and install the latest stable release from

Open MPI's official website, http://www.open-mpi.org

Important

http://www.open-mpi.org/

iWARP RDMA Offload

Chelsio Unified Wire for Linux 88

4.3. Setting up NFS-RDMA

 Starting NFS-RDMA

 Server-side settings

Follow the steps mentioned below to set up an NFS-RDMA server:

1. Make entry in /etc/exports file for the directories you need to export using NFS-RDMA on

server as:

/share/rdma1 *(fsid=1,rw,async,insecure,no_root_squash)

/share/rdma2 *(fsid=2,rw,async,insecure,no_root_squash)

Note that for each directory you export, you should have a DIFFERENT fsid’s.

2. Load the iwarp modules and make sure peer2peer is set to 1.

3. Load xprtrdma and svcrdma modules.

[root@host~]# modprobe xprtrdma

[root@host~]# modprobe svcrdma

4. Start the nfs-server service.

[root@host~]# service nfs-server start

All services in NFS should start without errors.

5. Now we need to edit the file portlist in the path /proc/fs/nfsd/

 Include the rdma port 20049 into this file.

[root@host~]# echo rdma 20049 > /proc/fs/nfsd/portlist

6. Run exportfs to make local directories available for Network File System (NFS) clients to

mount.

[root@host~]# exportfs -rav

Now the NFS-RDMA server is ready.

iWARP RDMA Offload

Chelsio Unified Wire for Linux 89

 Client-side settings

Follow the steps mentioned below on the client side:

1. Load the iwarp modules and make sure peer2peer is set to 1. Make sure that you are able

to ping and ssh to the server Chelsio interface through which directories are exported.

2. Load the xprtrdma module.

[root@host~]# modprobe xprtrdma

3. Run the showmount command to show all directories from the server.

[root@host~]# showmount –e <server-chelsio-ip>

4. Once the exported directories are listed, mount the directories.

[root@host~]# mount.nfs <serverip>:<directory> <mountpoint-on-client> -o

vers=3,rdma,port=20049,wsize=65536,rsize=65536

To use NFSv4, specify vers=4.

4.4. HMA

To use HMA, ensure that Unified Wire is installed using the Unified Wire (Default) configuration

tuning option. Currently, 256 IPv4/128 IPv6 iWARP Offload connections are supported on T6 25G

SO adapters. The following image shows the HMA reserved memory.

The following image shows the number of iWARP offloaded connections.

iWARP RDMA Offload

Chelsio Unified Wire for Linux 90

4.5. Performance Tuning

1. Apply the performance settings mentioned in the Performance Tuning section in the Unified

Wire chapter before proceeding.

2. Run the performance tuning script to update few kernel parameters using sysctl and map

iWARP queues to different CPUs.

[root@host~]# t4_perftune.sh -Q rdma -n -s

iWARP RDMA Offload

Chelsio Unified Wire for Linux 91

 Software/Driver Unloading

To unload the iWARP driver, run the following command:

[root@host~]# rmmod iw_cxgb4

iSER

Chelsio Unified Wire for Linux 92

V. iSER

iSER

Chelsio Unified Wire for Linux 93

 Introduction

The iSCSI Extensions for RDMA (iSER) protocol is a translation layer for operating iSCSI over

RDMA transports, such as iWARP/Ethernet or InfiniBand.

1.1. Hardware Requirements

 Supported adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T6225-SO-CR (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the iSER driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

iSER

Chelsio Unified Wire for Linux 94

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

iSER

Chelsio Unified Wire for Linux 95

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Ensure that the following iSER components are enabled in the kernel configuration file:

CONFIG_ISCSI_TARGET

CONFIG_INFINIBAND_ISER

CONFIG_INFINIBAND_ISERT

2. If the iSER components are not enabled, enable them as follows:

CONFIG_ISCSI_TARGET=m

CONFIG_INFINIBAND_ISER=m

CONFIG_INFINIBAND_ISERT=m

3. Compile and install the kernel, then boot into the new kernel and install the Chelsio Unified

Wire.

RHEL/Rocky/AlmaLinux 9.X/8.X/7.X, Ubuntu 22.04.X/20.04.X, Debian

12.X/11.X, SLES 15 SP4

No additional kernel configuration is required.

iSER

Chelsio Unified Wire for Linux 96

 Software/Driver Installation

3.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• Uninstall any OFED present in the machine.

• The rdma-core-devel package should be installed on RHEL/Rocky/AlmaLinux 9.X/8.X/7.X and

SLES 15 SP4 systems.

• targetcli will be automatically installed by the Chelsio Unified Wire installer using the package

manager yum/apt/zypper, if missing from the system. If you wish to use a different version, it

is highly recommended to install v2.1.fb29 or higher version.

3.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install Chelsio iSER driver, libraries, and targetcli utilities.

[root@host~]# make iser_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

iSER

Chelsio Unified Wire for Linux 97

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Follow the steps mentioned below on both target and initiator machines:

1. Unload the Chelsio iWARP driver if previously loaded.

[root@host~]# rmmod iw_cxgb4

2. Load the following modules.

[root@host~]# modprobe iw_cxgb4

[root@host~]# modprobe rdma_ucm

3. Start the iWARP Port Mapper Daemon.

[root@host~]# iwpmd

4. Bring up the Chelsio interface(s).

[root@host~]# ifconfig ethX x.x.x.x up

5. On target, run the following command:

[root@host~]# modprobe ib_isert

On initiator, run the following command:

[root@host~]# modprobe ib_iser

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

iSER

Chelsio Unified Wire for Linux 98

 Software/Driver Configuration and Fine-tuning

1. Configure LIO target with iSER support, using ramdisk as LUN.

[root@host~]# targetcli /backstores/ramdisk create name=ram0 size=1GB

[root@host~]# targetcli /iscsi create wwn=iqn.2003-01.org.lun0.target

[root@host~]# targetcli /iscsi/iqn.2003-01.org.lun0.target/tpg1/luns create

/backstores/ramdisk/ram0

[root@host~]# targetcli /iscsi/iqn.2003-01.org.lun0.target/tpg1 set

attribute authentication=0 demo_mode_write_protect=0 generate_node_acls=1

cache_dynamic_acls=1

[root@host~]# targetcli saveconfig

2. Discover LIO target using OpeniSCSI initiator.

[root@host~]# iscsiadm -m discovery -t st -p 102.10.10.4

3. Enable iSER support in LIO target.

[root@host~]# targetcli /iscsi/iqn.2003-

01.org.lun0.target/tpg1/portals/0.0.0.0:3260 enable_iser boolean=True

4. Login from the initiator with iSER as transport.

[root@host~]# iscsiadm -m node -p 102.10.10.4 -T iqn.2003-01.org.lun0.target

--op update -n node.transport_name -v iser

[root@host~]# iscsiadm -m node -p 102.10.10.4 -T iqn.2003-01.org.lun0.target

--login

iSER

Chelsio Unified Wire for Linux 99

5.1. HMA

To use HMA, ensure that Unified Wire is installed using the Unified Wire (Default) configuration

tuning option. Currently, 256 IPv4/128 IPv6 iSER Initiator Offload connections are supported on

T6 25G SO adapters. The following image shows the HMA reserved memory.

The following image shows the number of iSER offloaded connections.

5.2. Performance Tuning

1. Apply the performance settings mentioned in the Performance Tuning section in the Unified

Wire chapter before proceeding.

2. Run the performance tuning script to update few kernel parameters using sysctl and map

iWARP queues to different CPUs.

[root@host~]# t4_perftune.sh -Q rdma -n -s

iSER

Chelsio Unified Wire for Linux 100

 Software/Driver Unloading

To unload iSER driver:

On target, run the following commands:

[root@host~]# rmmod ib_isert

[root@host~]# rmmod iw_cxgb4

On initiator, run the following commands:

[root@host~]# rmmod ib_iser

[root@host~]# rmmod iw_cxgb4

WD-UDP

Chelsio Unified Wire for Linux 101

VI. WD-UDP

WD-UDP

Chelsio Unified Wire for Linux 102

 Introduction

Chelsio WD-UDP (Wire Direct-User Datagram Protocol) with Multicast is a user-space UDP stack

with Multicast address reception and socket acceleration that enables users to run their existing

UDP socket applications unmodified.

It features software modules that enable direct wire access from user space to the Chelsio

network adapter with a complete bypass of the kernel, which results in an ultra-low latency

Ethernet solution for high-frequency trading and other delay-sensitive applications.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3

 T6225-SO-CR

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the WD-UDP driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

WD-UDP

Chelsio Unified Wire for Linux 103

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

WD-UDP

Chelsio Unified Wire for Linux 104

 Software/Driver Installation

1.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• Uninstall any OFED present in the machine.

• The rdma-core-devel package should be installed on RHEL/Rocky/AlmaLinux 9.X/8.X/7.X

and SLES 15 SP4 systems.

• IOMMU should be disabled by adding intel_iommu/amd_iommu=off to the grub/grub2 kernel

command line.

1.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install iWARP driver and WD-UDP libraries.

[root@host~]# make iwarp_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

WD-UDP

Chelsio Unified Wire for Linux 105

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user may

fail.

To load the drivers, use the following commands:

[root@host~]# modprobe cxgb4

[root@host~]# modprobe iw_cxgb4

[root@host~]# modprobe rdma_ucm

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers:
Important

WD-UDP

Chelsio Unified Wire for Linux 106

 Software/Driver Configuration and Fine-tuning

3.1. Accelerating UDP Socket Communications

The libcxgb4_sock library is a LD_PRELOAD-able library that accelerates UDP Socket

communications transparently and without recompilation of the user application. This section

describes how to use libcxgb4_sock.

By preloading libcxgb4_sock, all sockets created by the application are intercepted and possibly

accelerated based on the user’s configuration. Once accelerated, data for the UDP endpoint are

transmitted or received via HW queues allocated specifically for the accelerated endpoint,

bypassing the kernel, the host networking stack and sockets framework, and enabling ultra-low

latency and high bandwidth utilization.

Due to HW resource limitations, only a small number of queues can be allocated for UDP

acceleration. Therefore, only performance critical UDP applications should use libcxgb4_sock.

Only 64 IPv4 UDP / 28 IPv6 UDP sockets can be accelerated per Chelsio device, with Unified

Wire Configuration tuning option. If you want more sockets to be accelerated, use Low

Latency or High Capacity WD tuning option.

 Application Requirements

Certain application behavior is not supported by libcxb4_sock in this release. If your application

does any of the following, it will not work with libcxgb4_sock:

 Calling fork() after creating UDP sockets and using the UDP socket in the child process.

 Using multiple threads on a single UDP socket without serialization. For instance, having one

thread sending concurrently with another thread receiving. If your application does this, you

need to serialize these paths with a spin or mutex lock.

 Only 1 UDP endpoint is allowed to bind to a given port per host. So, if you have multiple

processes on the same host binding to the same UDP port number, you cannot use

libcxgb4_sock.

 Applications must have root privileges to use libcxgb4_sock.

 Applications requiring bonded adapter interfaces are not currently supported.

The performance benefit observed with libcxgb4_sock will vary based on your application’s

behavior. While all UDP I/O is handled properly, only certain datagrams are accelerated. Non-

accelerated I/O is handled by libcxgb4_sock via the host networking stack seamlessly. Both

Unicast and Multicast datagrams can be accelerated, but the datagrams must meet the following

criteria:

 Non-fragmented. In other words, they fit in a single IP datagram that is <= the adapter device

MTU.

WD-UDP

Chelsio Unified Wire for Linux 107

 Routed through the Terminator acceleration device. If the ingress datagram arrives via a

device other than the Terminator acceleration device, then it will not utilize the acceleration

path. On egress, if the destination IP address will not route out via the Terminator device, then

it too will not be accelerated.

 Using libcxgb4_sock

The libcxgb4_sock library utilizes the Linux RDMA Verbs subsystem, and thus requires the RDMA

modules be loaded. Ensure that your systems load the iw_cxgb4 and rdma_ucm modules.

[root@host~]# modprobe iw_cxgb4

[root@host~]# modprobe rdma_ucm

Now, preload libcxgb4_sock, using one of the methods mentioned below when starting your

application:

• Preloading using wdload script

[root@host~]# PROT=UDP wdload <pathto>/your_application

The above command generates an end point file, libcxgb4_sock.conf at /etc/. Parameters like

interface name and port number can be changed in this file.

The following example shows how to run Netperf with WD-UDP:

server

[root@host~]# PROT=UDP wdload netserver -f -p <port_num> -D -L <server_ip>

client

[root@host~]# PROT=UDP wdload netperf -H <server_ip> -p <port_num> -t UDP_RR

• Preloading manually

Create a configuration file that defines which UDP endpoints should be accelerated, their vlan

and priority if any, as well as which Terminator interface/port should be used. The file

/etc/libcxgb4_sock.conf contains these endpoint entries. Create this file on all systems

using libcxgb4_sock. Here is the syntax:

WD-UDP

Chelsio Unified Wire for Linux 108

Syntax:

endpoint {attributes} ...

where attributes include:

interface = interface-name

port = udp-port-number

vlan = vlan-id

priority = vlan-priority

e.g.

endpoint {

interface=eth2.5

port = 8000 vlan = 5 priority=1

}

endpoint {interface=eth2 port=9999}

endpoints that bind to port 0 (requesting the host allocate a port)

can be accelerated with port=0:

endpoint {interface=eth1 port=0}

Assume your Terminator interface is eth2. To accelerate all applications that preload

libcxgb4_sock using eth2, you only need one entry in /etc/libcxgb4_sock.conf.

endpoint {interface=eth2 port=0}

For VLAN support, create your VLANs using the normal OS service (like vconfig, for example),

then add entries to define the VLAN and priority for each endpoint to be accelerated.

endpoint {interface = eth2.5 port=10000}

endpoint {interface = eth2.7 priority=3 port=9000}

Now, preload libcxgb4_sock.

[root@host~]# CXGB4_SOCK_CFG=<path to config file>

LD_PRELOAD=libcxgb4_sock.so <pathto>/your_application

• Multiple interfaces

To run on multiple interfaces, it is recommended to create a configuration file for each interface

with the corresponding ports to offload. The applications can be started as below:

[root@host~]# CXGB4_SOCK_CFG=<config_file1> PROT=UDP wdload <application>

[root@host~]# CXGB4_SOCK_CFG=<config_file2> PROT=UDP wdload <application>

To offload IPv6 UDP sockets, select low latency networking as the

configuration tuning option during installation.

Note

WD-UDP

Chelsio Unified Wire for Linux 109

 Running WD-UDP in debug mode

To use libcxgb4_sock’s debug capabilities, use the libcxgb4_sock_debug library provided in the

package. Follow the steps mentioned below:

1. Make the following entry in the /etc/syslog.conf file:

*.debug /var/log/cxgb4.log

2. Restart the service.

[root@host~]# /etc/init.d/syslog restart

3. Finally, preload libcxgb4_sock_debug using the command mentioned below when starting

your application:

[root@host~]# LD_PRELOAD=libcxgb4_sock_debug.so CXGB4_SOCK_DEBUG=-1

<pathto>/your_application

 Running WD-UDP with larger I/O size

If the I/O size is more than 3988, execute the commands mentioned below:

[root@host~]# echo 1024 > /proc/sys/vm/nr_hugepages

[root@host~]# CXGB4_SOCK_HUGE_PAGES=1 PROT=UDP wdload

<pathto>/your_application

 Example with hpcbench/udp

The udp benchmark from the hpcbench suite can be used to show the benefits of libcxgb4_sock.

The hpcbench suite can be found at:

Source: http://hpcbench.sourceforge.net/index.html

Sample: http://hpcbench.sourceforge.net/udp.html

The nodes in this example, r9 and r10, have Terminator eth1 configured and the ports are

connected point-to-point.

http://hpcbench.sourceforge.net/index.html
http://hpcbench.sourceforge.net/udp.html

WD-UDP

Chelsio Unified Wire for Linux 110

[root@r9 ~]# ifconfig eth1|grep inet

 inet addr:192.168.2.111 Bcast:192.168.2.255 Mask:255.255.255.0

 inet6 addr: fe80::7:4300:104:465a/64 Scope:Link

[root@r10 ~]# ifconfig eth1|grep inet

 inet addr:192.168.2.112 Bcast:192.168.2.255 Mask:255.255.255.0

 inet6 addr: fe80::7:4300:104:456a/64 Scope:Link

For this benchmark, we need a simple accelerate all configuration on both nodes.

[root@r9 ~]# cat /etc/libcxgb4_sock.conf

endpoint {interface=eth1 port=0}

[root@r10 ~]# cat /etc/libcxgb4_sock.conf

endpoint {interface=eth1 port=0}

On R10, we run udpserver on port 9000 without libcxgb4_sock preloaded, and on port 90001

with preload.

[root@r10 ~]# /usr/local/src/hpcbench/udp/udpserver -p 9000 &

[1] 11453

[root@r10 ~]# TCP socket listening on port [9000]

[root@r10 ~]# LD_PRELOAD=libcxgb4_sock.so

/usr/local/src/hpcbench/udp/udpserver -p 9001 &

[2] 11454

[root@r10 ~]# TCP socket listening on port [9001]

Then on r9, we run udptest to port 9000 to see the host stack UDP latency.

[root@r9 ~]# /usr/local/src/hpcbench/udp/udptest -r 5 -a -h 192.168.1.112 -p

9000

Running the same test with libcxgb4_sock.

[root@r9 ~]# LD_PRELOAD=libcxgb4_sock.so /usr/local/src/hpcbench/udp/udptest

-r 5 -a -h 192.168.1.112 -p 9001

 Determining if the application is being offloaded

To see if the application is being offloaded, open a window on one of the machines, and run

tcpdump against the Chelsio interface. If you see minimal UDP output on the interface, then the

UDP traffic is being properly offloaded.

WD-UDP

Chelsio Unified Wire for Linux 111

 Software/Driver Unloading

To unload the WD-UDP driver, run the following command:

[root@host~]# rmmod iw_cxgb4

NVMe-oF iWARP

Chelsio Unified Wire for Linux 112

VII. NVMe-oF iWARP

NVMe-oF iWARP

Chelsio Unified Wire for Linux 113

 Introduction

NVMe over Fabrics specification extends the benefits of NVMe to large fabrics, beyond the reach

and scalability of PCIe. NVMe enables deployments with hundreds or thousands of SSDs using

a network interconnect, such as iWARP RDMA over Ethernet. Thanks to an optimized protocol

stack, an end-to-end NVMe solution is expected to reduce access latency and improve

performance, particularly when paired with a low-latency, high-efficiency transport such as iWARP

RDMA. This allows applications to achieve fast storage response times, irrespective of whether

the NVMe SSDs are attached locally or accessed remotely across enterprise or

datacenter networks.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T6225-SO-CR (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the NVMe-oF iWARP driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

NVMe-oF iWARP

Chelsio Unified Wire for Linux 114

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

NVMe-oF iWARP

Chelsio Unified Wire for Linux 115

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Ensure that the following NVMe-oF iWARP components are enabled in the kernel

configuration file:

CONFIG_BLK_DEV_NVME

CONFIG_NVME_RDMA

CONFIG_NVME_TARGET

CONFIG_NVME_TARGET_RDMA

CONFIG_BLK_DEV_NULL_BLK

CONFIG_CONFIGFS_FS

2. If the NVMe-oF iWARP components are not enabled, enable them as follows:

CONFIG_BLK_DEV_NVME=m

CONFIG_NVME_RDMA=m

CONFIG_NVME_TARGET=m

CONFIG_NVME_TARGET_RDMA=m

CONFIG_BLK_DEV_NULL_BLK=m

CONFIG_CONFIGFS_FS=y

3. Compile and install the kernel, then boot into the new kernel and install the Chelsio Unified

Wire.

RHEL/Rocky/AlmaLinux 9.X/8.X/7.X, Ubuntu 22.04.X/20.04.X, Debian

12.X/11.X, SLES 15 SP4

No additional kernel configuration is required.

NVMe-oF iWARP

Chelsio Unified Wire for Linux 116

 Software/Driver Installation

3.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• Uninstall any OFED present in the machine.

• The rdma-core-devel package should be installed on RHEL/Rocky/AlmaLinux 9.X/8.X/7.X

and SLES 15 SP4 systems.

3.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install iWARP RDMA Offload driver and NVMe utilities.

[root@host~]# make nvme_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

NVMe-oF iWARP

Chelsio Unified Wire for Linux 117

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Follow the steps mentioned below on both target and initiator machines:

1. Load the following drivers:

[root@host~]# modprobe iw_cxgb4

[root@host~]# modprobe rdma_ucm

2. Bring up the Chelsio interface(s).

[root@host~]# ifconfig ethX x.x.x.x up

3. Mount configfs.

[root@host~]# mount -t configfs none /sys/kernel/config

4. On target, load the following drivers:

[root@host~]# modprobe null_blk

[root@host~]# modprobe nvmet

[root@host~]# modprobe nvmet-rdma

On initiator, load the following drivers:

[root@host~]# modprobe nvme

[root@host~]# modprobe nvme-rdma

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

NVMe-oF iWARP

Chelsio Unified Wire for Linux 118

 Software/Driver Configuration and Fine-tuning

The following sections describe the method to configure target and initiator.

5.1. Target

1. The following commands configure target using nvmetcli with a LUN:

[root@host~]# nvmetcli

/> cd subsystems

/subsystems> create nvme-ram0

/subsystems> cd nvme-ram0/namespaces

/subsystems/n...m0/namespaces> create nsid=1

/subsystems/n...m0/namespaces> cd 1

/subsystems/n.../namespaces/1> set device path=/dev/ram1

/subsystems/n.../namespaces/1> cd ../..

/subsystems/nvme-ram0> set attr allow_any_host=1

/subsystems/nvme-ram0> cd namespaces/1

/subsystems/n.../namespaces/1> enable

/subsystems/n.../namespaces/1> cd ../../../..

/> cd ports

/ports> create 1

/ports> cd 1/

/ports/1> set addr adrfam=ipv4

/ports/1> set addr trtype=rdma

/ports/1> set addr trsvcid=4420

/ports/1> set addr traddr=102.1.1.102

/ports/1> cd subsystems

/ports/1/subsystems> create nvme-ram0

2. Save the target configuration to a file.

/ports/1/subsystems> saveconfig /root/nvme-target_setup

/ports/1/subsystems> exit

3. To clear the targets,

[root@host~]# nvmetcli clear

NVMe-oF iWARP

Chelsio Unified Wire for Linux 119

5.2. Initiator

1. Discover the target.

[root@host~]# nvme discover -t rdma -a <target_ip> -s 4420

2. Connect to target.

• Connecting to a specific target.

[root@host~]# nvme connect -t rdma -a <target_ip> -s 4420 -n <target_name>

• Connecting to all targets configured on a portal.

[root@host~]# nvme connect-all -t rdma -a <target_ip> -s 4420

3. List the connected targets.

[root@host~]# nvme list

4. Format and mount the NVMe disks shown with the above command.

5. Disconnect from the target and unmount the disk.

[root@host~]# nvme disconnect -d <nvme_disk_name>

5.3. HMA

To use HMA, ensure that Unified Wire is installed using the Unified Wire (Default) configuration

tuning option. Currently, 256 IPv4/128 IPv6 NVMe-oF iWARP Initiator offload connections are

supported on T6 25G SO adapters.

Note nvme_disk_name is the name of the device (e.g., nvme0n1) and not the device

path.

NVMe-oF iWARP

Chelsio Unified Wire for Linux 120

The following image shows the HMA reserved memory.

The following image shows the number of NVMe-oF iWARP offloaded connections.

The total number of connections depends on the devices used and I/O queues. For example, if

the Initiator connects to 2 target devices with 4 I/O queues per device (-i 4), a total of 10 NVMe-

oF iWARP connections will be used.

5.4. Performance Tuning

Apply the performance settings mentioned in the Performance Tuning section in the Unified Wire

chapter before proceeding.

1. Ensure that Unified Wire is installed with NVMe Performance configuration tuning.

2. Run the performance tuning script to update few kernel parameters using sysctl and map

iWARP queues to different CPUs.

[root@host~]# t4_perftune.sh -n -Q rdma -s

3. Set the inline data size to 8192 before enabling the NVMe port.

[root@host~]# mkdir /sys/kernel/config/nvmet/ports/1

[root@host~]# echo 8192 >

/sys/kernel/config/nvmet/ports/1/param_inline_data_size

The following log should be seen in dmesg on enabling the NVMe port.

NVMe-oF iWARP

Chelsio Unified Wire for Linux 121

 Software/Driver Unloading

Follow the steps mentioned below to unload the drivers:

On target, run the following commands:

[root@host~]# rmmod nvmet-rdma

[root@host~]# rmmod nvmet

[root@host~]# rmmod iw_cxgb4

On initiator, run the following commands:

[root@host~]# rmmod nvme-rdma

[root@host~]# rmmod nvme

[root@host~]# rmmod iw_cxgb4

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 122

VIII. SPDK NVMe-oF iWARP

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 123

 Introduction

SPDK (Storage Performance Development Kit) designed to extract maximum performance by

moving all the necessary drivers to user space, polling hardware for completions instead of relying

on interrupts and avoiding all locks in the I/O path provides the benefits of high and scalable

performance and low latency for storage applications. SPDK provides both user space NVMe-oF

target (capable of serving disks) and initiator (host) which can run over iWARP RDMA transport.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the SPDK NVMe-oF iWARP driver is available for the following kernel versions:

 RHEL 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

http://spdk.io/

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 124

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Ensure that the following SPDK NVMe-oF iWARP components are enabled in the kernel

configuration file:

CONFIG_BLK_DEV_NVME

CONFIG_NVME_RDMA

CONFIG_NVME_TARGET

CONFIG_NVME_TARGET_RDMA

CONFIG_BLK_DEV_NULL_BLK

CONFIG_CONFIGFS_FS

2. If the SPDK NVMe-oF iWARP components are not enabled, enable them as follows:

CONFIG_BLK_DEV_NVME=m

CONFIG_NVME_RDMA=m

CONFIG_NVME_TARGET=m

CONFIG_NVME_TARGET_RDMA=m

CONFIG_BLK_DEV_NULL_BLK=m

CONFIG_CONFIGFS_FS=y

3. Compile and install the kernel, then boot into the new kernel and install the Chelsio Unified

Wire.

RHEL/Rocky Linux 9.X/8.X/7.X, Ubuntu 22.04.X/20.04.X, SLES 15 SP4

No additional kernel configuration is required.

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 125

 Software/Driver Installation

3.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• Uninstall any OFED present in the machine.

• The rdma-core-devel package should be installed on RHEL/Rocky Linux 9.X/8.X/7.X and

SLES 15 SP4 systems.

3.2. Installation

1. rdma-core version higher than 23 is recommended for SPDK NVMe-oF iWARP. Below are
the steps to install version 27:

[root@host ~]# wget "https://github.com/linux-rdma/rdma-

core/releases/download/v27.0/rdma-core-27.0.tar.gz"

[root@host ~]# tar zxfv rdma-core-27.0.tar.gz

[root@host ~]# tar cjf /root/rpmbuild/SOURCES/rdma-core-27.0.tgz rdma-

core-27.0/

[root@host rdma-core-27.0]# rpmbuild -ba redhat/rdma-core.spec

[root@host ~]# cd /root/rpmbuild/RPMS/x86_64/

[root@host x86_64]# rpm -ivh *27*.rpm

2. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

3. Install iWARP RDMA Offload drivers, libraries and NVMe utilities.

[root@host~]# make nvme_install

4. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Skip this step if the system already has the recommended version. Note
CUnit

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 126

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Follow the steps mentioned below on both target and initiator machines:

1. Load the iWARP RDMA Offload drivers.

[root@host~]# modprobe iw_cxgb4

[root@host~]# modprobe rdma_ucm

2. Bring up the Chelsio interface(s).

[root@host~]# ifconfig ethX x.x.x.x up

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 127

 Software/Driver Configuration and Fine-tuning

5.1. Target

1. Download SPDK v23.01.1 LTS.

[root@host~]# git clone https://github.com/spdk/spdk

[root@host~]# cd spdk

[root@host~]# git checkout v23.01.1

[root@host~]# git submodule update –init

 Change the below in CONFIG file.

 CONFIG_FIO_PLUGIN=y

FIO_SOURCE_DIR=<path_to_FIO_source>

CONFIG_RDMA=y

CONFIG_RDMA_SEND_WITH_INVAL=y

2. Run the below script to check that minimum SPDK dependencies are installed.

[root@host~]# cd spdk

[root@host~]# sh scripts/pkgdep.sh

3. Compile SPDK with RDMA and install it.

[root@host~]# make clean ; ./configure --with-rdma; make; make install

4. Configure Huge Pages.

[root@host~]# mkdir -p /mnt/huge

[root@host~]# echo 8192 > /proc/sys/vm/nr_hugepages

[root@host~]# echo 0 > /sys/kernel/mm/hugepages/hugepages-

1048576kB/nr_hugepages

[root@host~]# echo 8192 > /sys/kernel/mm/hugepages/hugepages-

2048kB/nr_hugepages

[root@host~]# vim /etc/fstab

nodev /dev/hugepages hugetlbfs pagesize=2MB 0 0

nodev /mnt/huge hugetlbfs pagesize=1GB 0 0

[root@host~]# mount -a

[root@host~]# cd spdk

[root@host~]# NRHUGE=8192 scripts/setup.sh

5. Start the SPDK NVMe-oF iWARP target.

[root@host~]# spdk/build/bin/nvmf_tgt -m 0xFFF &

https://github.com/spdk/spdk

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 128

6. Below are the sample configuration steps to create a malloc LUN.

[root@host~]# spdk/scripts/rpc.py nvmf_create_transport -t RDMA -c 8192 -u

131072 -n 8192 -b 256

[root@host~]# spdk/scripts/rpc.py bdev_malloc_create -b Malloc$i 256 512

[root@host~]# spdk/scripts/rpc.py nvmf_create_subsystem nqn.2016-

06.io.spdk:cnode0 -a -s SPDK00000000000000 -d SPDK_Controller0

[root@host~]# spdk/scripts/rpc.py nvmf_subsystem_add_ns nqn.2016-

06.io.spdk:cnode0 Malloc0

[root@host~]# spdk/scripts/rpc.py nvmf_subsystem_add_listener nqn.2016-

06.io.spdk:cnode0 -t rdma -a 10.1.1.163 -s 4420

5.2. Initiator

SPDK NVMe-oF iWARP target works seamlessly with SPDK NVMe-oF iWARP initiator or any

standard Linux kernel initiators. Refer to the NVMe-oF iWARP Initiator section for steps to use

Linux kernel initiator. To use the SPDK NVMe-oF iWARP Initiator,

1. Follow steps 1 to 4 of the SPDK Target section above to configure and install SPDK.

2. Connect to the target using fio plugin.

[root@host~]# LD_PRELOAD=/root/spdk/build/fi/spdk_nvme fio --

rw=randread/randwrite --name=random --norandommap=1 --

ioengine=/root/spdk/build/fio/spdk_nvme --thread=1 --size=400m --

group_reporting --exitall --invalidate=1 --direct=1 --filename='trtype=RDMA

adrfam=IPv4 traddr=10.1.1.163 trsvcid=4420 subnqn=nqn.2016-

06.io.spdk\:cnode0 ns=1' --time_based --runtime=20 --iodepth=64 --numjobs=4

--unit_base=1 --bs=<value> --kb_base=1000 --ramp_time=3

5.3. Performance Tuning

Apply the performance settings mentioned in the Performance Tuning section in the Unified Wire

chapter before proceeding.

1. Ensure that Unified Wire is installed with NVMe Performance configuration tuning.

2. Run the performance tuning script to update few kernel parameters using sysctl and map

iWARP queues to different CPUs.

[root@host~]# t4_perftune.sh -n -Q rdma -s

SPDK NVMe-oF iWARP

Chelsio Unified Wire for Linux 129

 Software/Driver Unloading

Follow the steps mentioned below to unload the SPDK NVMe-oF iWARP driver:

[root@host~]# rmmod iw_cxgb4

NVMe-oF TOE

Chelsio Unified Wire for Linux 130

IX. NVMe-oF TOE

NVMe-oF TOE

Chelsio Unified Wire for Linux 131

 Introduction

NVMe over Fabrics specification extends the benefits of NVMe to large fabrics, beyond the reach

and scalability of PCIe. NVMe over Fabrics (NVMe-oF) based on TCP is a new technology which

enables the use of NVMe-oF over existing Datacenter IP networks. Chelsio’s TOE (TCP Offload

Engine) is fully capable of offloading TCP/IP processing to hardware at 100Gbps and provides a

low latency, high throughput, plug-and-play Ethernet solution for connecting high-performance

NVMe SSDs over a scalable, congestion controlled and traffic managed fabric, with no special

configuration needed. The unique ability of a TOE to perform the full transport layer functionality

in hardware is essential to obtaining tangible benefits. The vital aspect of the transport layer is

process-to-process communication. That is the data passed to the TOE comes straight from the

application process, and the data delivered by the TOE goes straight to the application process.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T6225-SO-CR (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the NVMe-oF TOE driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

NVMe-oF TOE

Chelsio Unified Wire for Linux 132

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

NVMe-oF TOE

Chelsio Unified Wire for Linux 133

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Ensure that the following NVMe/TCP components are enabled in the kernel configuration

file:

CONFIG_NVME_CORE

CONFIG_NVME_FABRICS

CONFIG_NVME_TCP

CONFIG_NVME_TARGET

CONFIG_NVME_TARGET_TCP

CONFIG_BLK_DEV_NVME

CONFIG_BLK_DEV_NULL_BLK

CONFIG_CONFIGFS_FS

2. If the NVMe/TCP components are not enabled, enable them as follows:

CONFIG_NVME_CORE=m

CONFIG_NVME_FABRICS=m

CONFIG_NVME_TCP=m

CONFIG_NVME_TARGET=m

CONFIG_NVME_TARGET_TCP=m

CONFIG_BLK_DEV_NVME=m

CONFIG_BLK_DEV_NULL_BLK=m

CONFIG_CONFIGFS_FS=y

3. Compile and install the kernel, then boot into the new kernel and install the Chelsio Unified

Wire.

RHEL/Rocky/AlmaLinux 9.X/8.X, Ubuntu 22.04.X/20.04.X, Debian 12.X/11.X,

SLES 15 SP4

No additional kernel configuration is required.

NVMe-oF TOE

Chelsio Unified Wire for Linux 134

 Software/Driver Installation

3.1. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install TOE driver and NVMe utilities.

[root@host~]# make nvme_toe_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

NVMe-oF TOE

Chelsio Unified Wire for Linux 135

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Follow the steps mentioned below on both target and initiator machines:

1. Load the TOE driver.

[root@host~]# modprobe t4_tom

2. Bring up the Chelsio interface(s).

[root@host~]# ifconfig ethX x.x.x.x up

3. Mount configfs.

[root@host~]# mount -t configfs none /sys/kernel/config

4. Apply cop policy to disable DDP and Rx Coalesce.

[root@host~]# cat <policy_file>

all => offload !ddp !coalesce

[root@host~]# cop -d -o <policy_out> <policy_file>

[root@host~]# cxgbtool ethX policy <policy_out>

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

5. Load the nvme drivers. On target, run the following commands:

[root@host~]# modprobe null_blk

[root@host~]# modprobe nvmet

[root@host~]# modprobe nvmet-tcp

On initiator, run the following commands:

[root@host~]# modprobe nvme

[root@host~]# modprobe nvme-tcp

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

NVMe-oF TOE

Chelsio Unified Wire for Linux 136

 Software/Driver Configuration and Fine-tuning

The following sections describe the method to configure target and initiator.

5.1. Target

1. The following commands configure the target using nvmetcli with a LUN.

[root@host~]# nvmetcli

/> cd subsystems

/subsystems> create nvme-ram0

/subsystems> cd nvme-ram0/namespaces

/subsystems/n...m0/namespaces> create nsid=1

/subsystems/n...m0/namespaces> cd 1

/subsystems/n.../namespaces/1> set device path=/dev/ram1

/subsystems/n.../namespaces/1> cd ../..

/subsystems/nvme-ram0> set attr allow_any_host=1

/subsystems/nvme-ram0> cd namespaces/1

/subsystems/n.../namespaces/1> enable

/subsystems/n.../namespaces/1> cd ../../../..

/> cd ports

/ports> create 1

/ports> cd 1/

/ports/1> set addr adrfam=ipv4

/ports/1> set addr trtype=tcp

/ports/1> set addr trsvcid=4420

/ports/1> set addr traddr=102.1.1.102

/ports/1> cd subsystems

/ports/1/subsystems> create nvme-ram0

2. Save the target configuration to a file.

/ports/1/subsystems> saveconfig /root/nvme-target_setup

/ports/1/subsystems> exit

3. To clear the targets,

[root@host~]# nvmetcli clear

5.2. Initiator

1. Discover the target.

[root@host~]# nvme discover -t tcp -a <target_ip> -s 4420

NVMe-oF TOE

Chelsio Unified Wire for Linux 137

2. Connect to target.

• Connecting to a specific target.

[root@host~]# nvme connect -t tcp -a <target_ip> -s 4420 -n <target_name>

• Connecting to all targets configured on a portal.

[root@host~]# nvme connect-all -t tcp -a <target_ip> -s 4420

3. List the connected targets.

[root@host~]# nvme list

4. Format and mount the NVMe disks shown with the above command.

5. Disconnect from the target and unmount the disk.

[root@host~]# nvme disconnect -d <nvme_disk_name>

5.3. HMA

To use HMA, ensure that Unified Wire is installed using the Unified Wire (Default) configuration

tuning option. Currently, 256 IPv4/128 IPv6 NVMe-oF TOE Initiator offload connections are

supported on T6 25G SO adapters.

The following image shows the HMA reserved memory.

The following image shows the number of NVMe-oF TOE offloaded connections.

The total number of connections depends on the devices used and I/O queues. For example, if

the initiator connects to 2 target devices with 4 I/O queues per device (-i 4), a total of 10 NVMe-

oF TOE connections are used.

Note
nvme_disk_name is the name of the device (for example, nvme0n1) and not the

device path.

NVMe-oF TOE

Chelsio Unified Wire for Linux 138

5.4. Performance Tuning

Apply the performance settings mentioned in the Performance Tuning section in the Unified Wire

chapter before proceeding.

1. Run the performance tuning script to update few kernel parameters using sysctl and map

TOE queues to different CPUs.

[root@host~]# t4_perftune.sh -n -s -Q ofld

2. Set the below TOE sysctl parameters.

[root@host~]# sysctl -w toe.toeX_tom.max_host_sndbuf=49152

[root@host~]# sysctl -w toe.toeX_tom.txplen=0

NVMe-oF TOE

Chelsio Unified Wire for Linux 139

 Software/Driver Unloading

Follow the steps mentioned below to unload the nvme drivers:

On target, run the following commands:

[root@host~]# rmmod nvmet-tcp

[root@host~]# rmmod nvmet

On initiator, run the following commands:

[root@host~]# rmmod nvme-tcp

[root@host~]# rmmod nvme

To unload the TOE driver, refer to the Software/Driver Unloading section in the Network

(NIC/TOE) chapter.

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 140

X. SPDK NVMe-oF TOE

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 141

 Introduction

NVMe over Fabrics specification extends the benefits of NVMe to large fabrics, beyond the reach

and scalability of PCIe. NVMe over Fabrics (NVMe-oF) based on TCP is a new technology which

enables the use of NVMe-oF over existing Datacenter IP networks. The Storage Performance

Development Kit (SPDK)) provides an accelerated user space NVMe-oF target (RDMA and TCP

transports), which provides much better performance compared with the kernel solution. Chelsio’s

TOE (TCP Offload Engine) is fully capable of offloading SPDK NVMe-oF TCP target processing

to hardware at 100Gbps and provides a low latency, high throughput, plug-and-play Ethernet

solution for connecting high-performance NVMe SSDs over a scalable, congestion controlled and

traffic managed fabric, with no special configuration needed. The unique ability of a TOE to

perform the full transport layer functionality in hardware is essential to obtaining tangible benefits.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the SPDK NVMe-oF TOE driver is available for the following kernel versions:

 RHEL 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky 8.8, 4.18.0-477.10.1.el8_8.x86_64

http://spdk.io/

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 142

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 143

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Ensure that the following NVMe/TCP components are enabled in the kernel configuration

file:

CONFIG_NVME_CORE

CONFIG_NVME_FABRICS

CONFIG_NVME_TCP

CONFIG_NVME_TARGET

CONFIG_NVME_TARGET_TCP

CONFIG_BLK_DEV_NVME

CONFIG_BLK_DEV_NULL_BLK

CONFIG_CONFIGFS_FS

2. If the NVMe/TCP components are not enabled, enable them as follows:

CONFIG_NVME_CORE=m

CONFIG_NVME_FABRICS=m

CONFIG_NVME_TCP=m

CONFIG_NVME_TARGET=m

CONFIG_NVME_TARGET_TCP=m

CONFIG_BLK_DEV_NVME=m

CONFIG_BLK_DEV_NULL_BLK=m

CONFIG_CONFIGFS_FS=y

3. Compile and install the kernel, then boot into the new kernel and install the Chelsio Unified

Wire.

RHEL/Rocky 9.X/8.X/7.X, Ubuntu 22.04.X/20.04.X, SLES 15 SP4

No additional kernel configuration is required.

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 144

 Software/Driver Installation

3.1. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install SPDK NVMe-oF TOE driver and NVMe utilities.

[root@host~]# make nvme_toe_spdk_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 145

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Follow the steps mentioned below on the target machine:

1. Load the SPDK NVMe-oF TOE driver.

[root@host~]# modprobe chtcp

2. Bring up the Chelsio interface(s).

[root@host~]# ifconfig ethX x.x.x.x up

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 146

 Software/Driver Configuration and Fine-tuning

5.1. Target

1. SPDK v23.01.1 LTS, customized to support TCP/IP offload and kernel bypass for SPDK

NVMe-oF TCP Target is part of the Chelsio Unified Wire package. Change your current

working directory to the Chelsio SPDK directory.

[root@host~]# cd ChelsioUwire-x.x.x.x/build/src/chspdk/user/spdk/

2. Configure Huge Pages.

[root@host~]# mkdir -p /mnt/huge

[root@host~]# echo 8192 > /proc/sys/vm/nr_hugepages

[root@host~]# echo 0 > /sys/kernel/mm/hugepages/hugepages-

1048576kB/nr_hugepages

[root@host~]# echo 8192 > /sys/kernel/mm/hugepages/hugepages-

2048kB/nr_hugepages

[root@host~]# vim /etc/fstab

nodev /dev/hugepages hugetlbfs pagesize=2MB 0 0

nodev /mnt/huge hugetlbfs pagesize=1GB 0 0

[root@host~]# mount -a

[root@host~]# NRHUGE=8192 scripts/setup.sh

3. Start the target.

 [root@host spdk]# ./build/bin/nvmf_tgt -m <cpu_mask>

4. Below are the sample configuration steps to create a LUN with the null device.

SPDK_PATH=$'ChelsioUwire-x.x.x.x/build/src/chspdk/user/spdk/'

$SPDK_PATH/scripts/rpc.py nvmf_create_transport -t TCP

$SPDK_PATH/scripts/rpc.py bdev_null_create Null0 1024 4096

$SPDK_PATH/scripts/rpc.py nvmf_create_subsystem nqn.2016-06.io.spdk:cnode0 -

a -s SPDK00000000000000 -d SPDK_Controller0

$SPDK_PATH/scripts/rpc.py nvmf_subsystem_add_ns nqn.2016-06.io.spdk:cnode0

Null0

$SPDK_PATH/scripts/rpc.py nvmf_subsystem_add_listener nqn.2016-

06.io.spdk:cnode0 -t tcp -a 10.1.1.163 -s 4420

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 147

5.2. Initiator

SPDK NVMe-oF TOE target works seamlessly with SPDK NVMe-oF TCP initiator or any kernel

mode initiators. Refer to the NVMe-oF TOE Initiator section for steps to connect to the target.

SPDK NVMe-oF TOE

Chelsio Unified Wire for Linux 148

 Software/Driver Unloading

Follow the steps mentioned below to unload the SPDK NVMe-oF TOE drivers:

On target, run the following commands:

[root@host~]# rmmod chtcp

[root@host~]# rmmod cxgb4

SoftiWARP

Chelsio Unified Wire for Linux 149

XI. SoftiWARP

SoftiWARP

Chelsio Unified Wire for Linux 150

 Introduction

SoftiWARP (siw) is a software iWARP kernel driver and user library for Linux that implements the

iWARP protocol suite completely in software, without requiring any dedicated RDMA hardware.

Due to close integration with the Linux kernel socket layer, SoftiWARP allows for efficient data

transfer operations and since the implementation conforms to the iWARP protocol specification,

it is wire compatible with any peer network adapter (RNIC) implementing iWARP in hardware. It

offers the following advantages:

• Provides a simple path for transition of RDMA applications to the cloud platform.

• Is useful for Client/Initiator side applications such as iSER, NVMe-oF, NFSoRDMA, and

LustreoRDMA to connect to hardware offloaded versions on the target side.

• Supports the ability to work with any legacy switch infrastructure, enabling a decoupled

server and switch upgrade cycle.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR

 T62100-SO-OCP3

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3

 T6225-SO-CR

 T580-CR

 T580-LP-CR

 T580-SO-CR

 T580-OCP-SO

 T540-CR

 T540-LP-CR

 T540-SO-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-SO-CR

 T520-OCP-SO

 T520-BT

SoftiWARP

Chelsio Unified Wire for Linux 151

1.2. Software Requirements

 Linux Requirements

Currently, the SoftiWARP driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

SoftiWARP

Chelsio Unified Wire for Linux 152

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Ensure that the following SoftiWARP component is enabled in the kernel configuration file:

CONFIG_RDMA_SIW=m

2. If the SoftiWARP components are not enabled, enable them as follows:

CONFIG_RDMA_SIW=m

3. Compile and install the kernel, then boot into the new kernel and install Chelsio Unified

Wire.

 RHEL/Rocky/AlmaLinux 9.X/8.X, Ubuntu 22.04.X/20.04.X, SLES 15 SP4

 No additional kernel configuration is required.

SoftiWARP

Chelsio Unified Wire for Linux 153

 Software/Driver Installation

3.1. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install network driver and NVMe, iSER utilities.

[root@host~]# make install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

SoftiWARP

Chelsio Unified Wire for Linux 154

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Follow the steps mentioned below on the Initiator/Client machine:

1. Load the network driver (cxgb4).

[root@host~]# modprobe cxgb4

2. Load the SoftiWARP driver (siw).

[root@host~]# modprobe siw

3. Unload the iWARP RDMA offload driver (iw_cxgb4).

[root@host~]# rmmod iw_cxgb4

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

SoftiWARP

Chelsio Unified Wire for Linux 155

 Software/Driver Configuration and Fine-tuning

SoftiWARP (siw) can be used on initiators to connect to iWARP RDMA Hardware Offload iSER

and NVMe-oF targets. It can also be used on NFSoRDMA, LustreoRDMA clients to connect to

the Hardware Offload servers.

5.1. Initiator/Client

1. RDMA tool (rdma) is used to configure the siw device. It is installed by default from RHEL/

Rocky Linux 8.4, Ubuntu 20.04, and SLES 15 SP4 distributions. If not present in the machine,

then install it from the latest iproute2 package.

2. Configure the siw device.

[root@host~]# rdma link add <siw_device> type siw netdev <ethX>

[root@host~]# ifconfig ethX <IP address> up

3. Verify the configuration using ibv_devices.

4. The initiator/client can now connect to the target/server machines.

Refer to the NVMe-oF iWARP initiator and iSER initiator sections for steps to connect to the

respective targets.

Important Disable iWARP Port Mapper (iwpmd) service on Target and Initiator.

[root@host~]# systemctl stop iwpmd

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git

SoftiWARP

Chelsio Unified Wire for Linux 156

 Software/Driver Unloading

Follow the steps mentioned below to unload the SoftiWARP and network drivers:

[root@host~]# rmmod siw

[root@host~]# rmmod cxgb4

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 157

XII. LIO iSCSI Target Offload

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 158

 Introduction

Linux-IO Target (LIO) is the in-kernel SCSI target implementation in Linux. This open-source

standard supports common storage fabrics, including Fibre Channel, FCoE, iEEE 1394, iSCSI,

NVMe-oF, iSER, SRP, USB, vHost, etc. The LIO iSCSI fabric module implements many advanced

iSCSI features that increase performance and resiliency. The LIO iSCSI Target Offload driver

provides the following high-level features:

• Offloads TCP/IP.

• Offloads iSCSI Header and Data Digest Calculations.

• Offload Speeds at 10/25/40/100Gb.

• Supports Direct Data Placement (DDP).

• Supports iSCSI Segmentation Offload and iSCSI PDU recovery.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

cxgb4, iscsi_target_mod, target_core_mod, and ipv6 modules are required by LIO iSCSI Target

Offload (cxgbit.ko) module to work.

 Linux Requirements

Currently, the LIO iSCSI Target Offload driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 159

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other versions have not been tested and are not guaranteed to work.

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 160

 Kernel Configuration

RHEL/Rocky/AlmaLinux 9.X/8.X/7.X

1. Download the kernel source RPM kernel-3.10.0-xxx.el7.src.rpm for your distribution.

2. Install the kernel source.

[root@host~]# rpm -ivh kernel-3.10.0-xxx.el7.src.rpm

3. Prepare the kernel source.

[root@host~]# cd /root/rpmbuild/SPECS/

[root@host~]# rpmbuild -bp kernel.spec --nodeps

[root@host~]# cd /root/rpmbuild/BUILD/kernel-3.10.0-xxx.el7/linux-3.10.0-

xxx.el7.x86_64/

[root@host~]# make prepare

4. Copy the source to /usr/src directory.

[root@host~]# cp -r linux-3.10.0-xxx.el7 /usr/src

5. Proceed with driver installation as directed in the Software/Driver Installation section.

Kernel.org linux-6.6.X/6.1.X

Follow the below steps to use a 6.6.X/6.1.X kernel version,

1. Download the required kernel version from kernel.org.

2. Extract the tar-ball.

3. Change your working directory to the kernel directory and run the following command to

invoke the installation menu.

 [root@host~]# make menuconfig

4. Select Device Drivers > Generic Target Core Mod (TCM) and ConfigFS Infrastructure.

5. Enable Linux-iSCSI.org iSCSI Target Mode Stack as a Module (if not already enabled).

6. Select Save.

7. Exit from the installation menu.

8. Continue with kernel installation as usual.

9. Boot into the new kernel and proceed with driver installation as directed in the

Software/Driver Installation section.

Kernel.org linux-4.9.X

1. Download the stable version of 4.9 from kernel.org.

2. Extract the tar-ball.

3. Change your working directory to the kernel package directory and run the following

command to invoke the installation menu.

kernel.org
kernel.org

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 161

[root@host~]# make menuconfig

4. Select Device Drivers > Generic Target Core Mod (TCM) and ConfigFS Infrastructure.

5. Enable Linux-iSCSI.org iSCSI Target Mode Stack.

6. Select Save.

7. Exit from the installation menu.

8. Apply the patch provided in the Unified Wire package.

[root@host~]# patch -p1 <

/root/<driver_package>/src/cxgbit/patch/iscsi_target.patch

9. Continue with kernel installation as usual.

10. Boot into the new kernel and proceed with driver installation as directed in the

Software/Driver Installation section.

Ubuntu 22.04.X/20.04.X

1. Clone Ubuntu Linux kernel source repository.

Ubuntu 22.04.X

[root@host~]# git clone https://git.launchpad.net/~ubuntu-

kernel/ubuntu/+source/linux/+git/jammy

Ubuntu 20.04.X

[root@host~]# git clone https://git.launchpad.net/~ubuntu-

kernel/ubuntu/+source/linux/+git/focal

Ubuntu 18.04.X

[root@host~]# git clone https://git.launchpad.net/~ubuntu-

kernel/ubuntu/+source/linux/+git/bionic

2. Check the booted kernel version using uname -r.

3. Find the git tag which matches the kernel version.

[root@host~]# cd jammy/

[root@host~]# git tag -l Ubuntu-* | grep -i 5.15.0-25

Ubuntu-5.15.0-25.25

4. Check out to the changeset.

[root@host~]# git checkout Ubuntu-5.15.0-25.25

5. Proceed with driver installation as directed in the Software/Driver Installation section.

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 162

SLES 15 SP4

1. Install the kernel source.

[root@host~]# zypper install kernel-source

Debian 12.X/11.X

i. Install the kernel source.

Debian 12.X

[root@host~]# apt install linux-source-6.1

Debian 11.X

[root@host~]# apt install linux-source-5.10

ii. Extract the kernel source.

[root@host~]# cd /usr/src

[root@host~]# tar xf linux-source-x.x.tar.xz

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 163

 Software/Driver Installation

3.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• targetcli will be automatically installed by the Chelsio Unified Wire installer using the package

manager yum/apt/zypper, if missing from the system. If you wish to use a different version,

it is highly recommended to install v2.1.fb44 or higher versions.

3.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install LIO driver and targetcli utilities.

[root@host~]# make lio_install

For RHEL/Rocky/AlmaLinux 9.X/8.X/7.X, Ubuntu 22.04.X/20.04.X, and Debian 12.X/11.X, the

kernel source (KSRC) and kernel object (KOBJ) should be specified.

• CLI mode

[root@host~]# make lio_install KSRC="<kernel_source_dir>"

KOBJ="<kernel_object_dir>"

Example: For Ubuntu 22.04,

[root@host~]# make lio_install KSRC=/root/jammy/ KOBJ=/lib/modules/5.15.0-

25-generic/build

• CLI mode (without Dialog utility)

[root@host~]# ./install.py --ksrc=<kernel_source_dir> --

kobj=<kernel_object_dir>

Example: For RHEL 7.9,

[root@host~]# ./install.py --ksrc=/usr/src/linux-3.10.0-1160.el7 -

kobj=/lib/modules/3.10.0-1160.el7.x86_64/build/

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 164

• GUI mode

[root@host~]# ./install.py --set-kpath

Provide the paths for kernel source and kernel object on the last screen of the installer. Select

OK.

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 165

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user may

fail.

1. Load network driver (cxgb4).

[root@host~]# modprobe cxgb4

2. Bring up the interface.

[root@host~]# ifconfig ethX <IP address> up

3. Load the LIO iSCSI Target Offload driver (cxgbit).

 [root@host~]# modprobe cxgbit

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 166

 Software/Driver Configuration and Fine-tuning

5.1. Configuring LIO iSCSI Target

The LIO iSCSI Target needs to be configured before it can become useful. Refer to the targetcli

man page using the man targetcli command to do so.

 Sample Configuration

Here is a sample iSCSI configuration listing a target configured with one RAM disk LUN and

ACL not configured:

5.2. Offloading LIO iSCSI Connection

To offload the LIO iSCSI Target,

[root@host~]# targetcli /iscsi/<target_iqn>/tpg1/portals/<target_ip>\:3260

enable_offload boolean=True

Execute the above command for every portal address listening on the Chelsio interface.

5.3. Running LIO iSCSI and Network Traffic Concurrently

If you wish to run network traffic with offload support (TOE) and LIO iSCSI traffic together,

1. If not done already, load the network driver with offload support (TOE).

 [root@host~]# modprobe t4_tom

2. Create a new policy file.

[root@host~]# cat <new_policy_file>

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 167

3. Add the following lines to offload all traffic except LIO iSCSI:

listen && src port <target_listening_port> && src host <target_listening_ip>

=> !offload

all => offload

4. Compile the policy.

[root@host~]# cop -d -o <output_policy_file> <new_policy_file>

5. Apply the policy.

[root@host~]# cxgbtool ethX policy <output_policy_file>

Example:

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

5.4. Performance Tuning

1. Apply the performance settings mentioned in the Performance Tuning section in the Unified

Wire chapter before proceeding.

2. Run the performance tuning script to update few kernel parameters using sysctl and map

LIO Target queues to different CPUs.

[root@host~]# t4_perftune.sh -Q iSCSIT -n -s

3. For maximum performance, it is recommended to use iSCSI PDU offload initiator.

• For MTU 9000, no additional configuration is needed.

• For MTU 1500, set InitialR2T to No using:

[root@host~]# targetcli iscsi/<target_iqn>/tpg1/ set parameter InitialR2T=No

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

LIO iSCSI Target Offload

Chelsio Unified Wire for Linux 168

 Software/Driver Unloading

6.1. Unloading the LIO iSCSI Target Offload Driver

To unload the LIO iSCSI Target Offload kernel module, follow the steps mentioned below:

1. Log out from the initiator.

2. Run the following command:

[root@host~]# targetcli /iscsi/<target_iqn>/tpg1/portals/<target_ip>\:3260

enable_offload boolean=False

Execute the above command for every portal address listening on the Chelsio interface.

3. Unload the driver.

[root@host~]# rmmod cxgbit

6.2. Unloading the NIC Driver

To unload the NIC driver, run the following command:

[root@host~]# rmmod cxgb4

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 169

XIII. iSCSI PDU Offload Initiator

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 170

 Introduction

The Chelsio Unified Wire series of adapters support iSCSI acceleration and iSCSI Direct Data

Placement (DDP) where the hardware handles the expensive byte touching operations, such as

CRC computation and verification, and direct DMA to the final host memory destination:

• iSCSI PDU digest generation and verification

On transmit-side, Chelsio hardware computes and inserts the Header and Data digest into

the PDUs. On receive-side, Chelsio hardware computes and verifies the Header and Data

digest of the PDUs.

• Direct Data Placement (DDP)

Chelsio hardware can directly place the iSCSI Data-In or Data-Out PDU's payload into pre-

posted destination host-memory buffers based on the Initiator Task Tag (ITT) in Data-In or

Target Task Tag (TTT) in Data-Out PDUs.

• PDU Transmit and Recovery

On transmit-side, Chelsio hardware accepts the complete PDU (header + data) from the host

driver, computes and inserts the digests, decomposes the PDU into multiple TCP segments

if necessary, and transmits all the TCP segments onto the wire. It handles TCP retransmission

if needed.

On receive-side, Chelsio hardware recovers the iSCSI PDU by reassembling TCP segments,

separating the header and data, calculating and verifying the digests, and then forwarding the

header to the host. The payload data will be directly placed into the pre-posted host DDP

buffer if possible. Otherwise, the data will be sent to the host too.

The cxgb4i driver interfaces with open-iSCSI initiator and provides the iSCSI acceleration through

Chelsio hardware wherever applicable.

1.1. Hardware Requirements

 Supported adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 171

 T6225-SO-CR (Memory-free; 256 IPv4/128 IPv6 Initiator offload connections supported)

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the iSCSI PDU Offload Initiator driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 172

 Software/Driver Installation

2.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• The iSCSI PDU Offload Initiator driver (cxgb4i) runs on top of NIC driver (cxgb4) and open-

iscsi version greater than 2.0-872 on a Chelsio card.

• openssl-devel package should be installed.

2.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install open-iSCSI,iSCSI-initiator, firmware, and utilities.

[root@host~]# make iscsi_pdu_initiator_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h Note

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 173

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

Run the following command to load the driver:

[root@host~]# modprobe cxgb4i

If loading of cxgb4i displays the unkown symbols found error message in dmesg, follow the

steps mentioned below:

1. View all the loaded iSCSI modules.

[root@host~]# lsmod | grep iscsi

2. Now, unload them using the following command:

[root@host~]# rmmod <modulename>

3. Finally reload the cxgb4i driver.

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 174

 Software/Driver Configuration and Fine-tuning

4.1. Accelerating open-iSCSI Initiator

To accelerate the open-iSCSI initiator, the following steps need to be taken :

 Configuring interface (iface) file

Create the file automatically by loading cxgb4i driver and then executing the following

command:

[root@host~]# iscsiadm -m iface

Alternatively, you can create an interface file located under iface directory for the new transport

class cxgb4i in the following format:

iface.iscsi_ifacename = <iface file name>

iface.hwaddress = <MAC address>

iface.transport_name = cxgb4i

iface.net_ifacename = <ethX>

iface.ipaddress = <iscsi ip address>

Here,

iface.iscsi_ifacename : Interface file in /etc/iscsi/ifaces/

iface.hwaddress : MAC address of the Chelsio interface via which iSCSI traffic will be
running.

iface.transport_name : Transport name, which is cxgb4i.
iface.net_ifacename : Chelsio interface via which iSCSI traffic will be running.
iface.ipaddress : IP address which is assigned to the interface.

Example:

iface.iscsi_ifacename = cxgb4i.00:07:43:04:5b:da

iface.hwaddress = 00:07:43:04:5b:da

iface.transport_name = cxgb4i

iface.net_ifacename = eth3

iface.ipaddress = 102.2.2.137

i. The interface file needs to be created in /etc/iscsi/ifaces/ directory.

ii. If iface.ipaddress is specified, it needs to be either the same as the

ethX's IP address or an address on the same subnet. Make sure the IP

address is unique in the network.

Note

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 175

 Discovery and Login

a. Starting iSCSI Daemon

Start Daemon from /sbin by using the following command:

[root@host~]# iscsid

b. Discovering iSCSI Targets

To discover an iSCSI target, execute the command in the following format:

[root@host~]# iscsiadm -m discovery -t st -p <target ip address>:<target

port no> -I <cxgb4i iface file name>

Example:

[root@host~]# iscsiadm -m discovery -t st -p 102.2.2.155:3260 -I

cxgb4i.00:07:43:04:5b:da

c. Logging into an iSCSI Target

Log into an iSCSI target using the following format:

[root@host~]# iscsiadm -m node -T <iqn name of target> -p <target ip

address>:<target port no> -I <cxgb4i iface file name> -l

Example:

[root@host~]# iscsiadm -m node -T iqn.2004-05.com.chelsio.target1 -p

102.2.2.155:3260,1 -I cxgb4i.00:07:43:04:5b:da -l

If the login fails with an error message in the format of ERR! MaxRecvSegmentLength <X> too

big. Need to be <= <Y>. in dmesg, edit the iscsi/iscsid.conf file and change the setting

for MaxRecvDataSegmentLength:

node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192

If iscsid is already running, then kill the service and start it as shown above after

installing the Chelsio Unified Wire package.

Note

Always take a backup of iscsid.conf file before installing Chelsio Unified

Wire Package. Although the file is saved to iscsid.rpmsave after uninstalling

the package using RPM, you are still advised to take a backup.

Important

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 176

d. Logging out from an iSCSI Target

Log out from an iSCSI Target by executing a command in the following format:

[root@host~]# iscsiadm -m node -T <iqn name of target> -p <target ip

address>:<target port no> -I <cxgb4i iface file name> -u

Example:

[root@host~]# iscsiadm -m node -T iqn.2004-05.com.chelsio.target1 -p

102.2.2.155:3260,1 -I cxgb4i.00:07:43:04:5b:da -u

4.2. HMA

To use HMA, ensure that Unified Wire is installed using the Unified Wire (Default) configuration

tuning option.

1. Use LIO iSCSI Target in offload mode.

2. Configure MTU 9000 for Chelsio Interfaces.

3. Load the iSCSI PDU Offload Initiator driver using the following parameters.

 [root@host~]# modprobe cxgb4i cxgb4i_snd_win=131072 cxgb4i_rcv_win=262144

Currently, 256 IPv4/128 IPv6 iSCSI PDU Offload Initiator connections are supported on T6 25G

SO adapters. The following image shows the HMA reserved memory.

The following image shows the number of offloaded connections.

Other options can be found by typing iscsiadm --help Note

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 177

4.3. Auto login from cxgb4i initiator at OS bootup

For iSCSI, auto login (via cxgb4i) to work on OS startup, add the following line to start() in

/etc/rc.d/init.d/iscsid file on RHEL:

modprobe -q cxgb4i

Example:

force_start() {

 echo -n $"Starting $prog: "

 modprobe -q iscsi_tcpmodprobe -q ib_iser

 modprobe -q cxgb4i

 modprobe -q cxgb3i

 modprobe -q bnx2i

 modprobe -q be2iscsi

 daemon brcm_iscsiuio

 daemon $prog

 retval=$?

 echo

 [$retval -eq 0] && touch $lockfile

 return $retval

}

4.4. Performance Tuning

Apply the performance settings mentioned in the Performance Tuning section in the Unified Wire

chapter before proceeding.

If iSCSI Initiator IRQs pose a bottleneck for multiple connections, you can improve IOPS

performance using the steps mentioned below.

1. Enable iSCSI multi-queue. In 3.18+ kernels, add the below entry to the grub configuration

file and reboot the machine:

scsi_mod.use_blk_mq=1

2. Run the performance tuning script to update few kernel parameters using sysctl and map

iSCSI Initiator queues to different CPUs.

[root@host~]# t4_perftune.sh -Q iSCSI -n -s

3. Load initiator driver.

[root@host~]# modprobe cxgb4i

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 178

4. For MTU 9000, no additional configuration is needed.

For MTU 1500, set the following parameters in the iSCSI configuration file

/etc/iscsi/iscsid.conf.

node.session.iscsi.InitialR2T = No

node.session.iscsi.ImmediateData = Yes

node.session.iscsi.FirstBurstLength = 8192

node.conn[0].iscsi.MaxRecvDataSegmentLength = 1024

node.conn[0].iscsi.MaxXmitDataSegmentLength = 1024

5. Login to multiple targets.

6. Run IOPS test.

iSCSI PDU Offload Initiator

Chelsio Unified Wire for Linux 179

 Software/Driver Unloading

To unload the driver, execute the following commands:

[root@host~]# rmmod cxgb4i

[root@host~]# rmmod libcxgbi

Crypto Offload

Chelsio Unified Wire for Linux 180

XIV. Crypto Offload

Crypto Offload

Chelsio Unified Wire for Linux 181

 Introduction

Chelsio’s Terminator 6 (T6) Unified Wire ASIC enables concurrent secure communication and

secure storage with support for integrated TLS/SSL and inline cryptographic functions, leveraging

the proprietary TCP/IP offload engine. Chelsio’s full offload TLS/SSL is uniquely capable of 100Gb

line-rate performance.

In addition, the accelerator can be used in a traditional co-processor Lookaside mode to

accelerate TLS/SSL, IPsec, SMB 3.X crypto, data at rest encryption/decryption, and data-

deduplication fingerprint computation.

1.1. Hardware Requirements

 Supported adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3*

 T6225-SO-CR*

1.2. Software Requirements

 Linux Requirements

Currently, the Crypto Offload driver is available for the following kernel versions:

Linux Version Crypto Components

RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

Inline TLS, Co-processor

RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

SLES 15 SP4, 5.14.21-150400.22-default

Ubuntu 22.04.5, 5.15.0-125-generic

Ubuntu 20.04.6, 5.4.0-146-generic

Kernel.org linux-6.6.60 (compiled on RHEL9.X/8.X)

* Only Co-processor driver supported.

Crypto Offload

Chelsio Unified Wire for Linux 182

Kernel.org linux-6.1.116 (compiled on RHEL9.X/8.X)

Debian 12.7, 6.1.0-25-amd64

RHEL 7.9, 3.10.0-1160.el7.x86_64
Co-processor (IPsec) RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

Crypto Offload

Chelsio Unified Wire for Linux 183

 Kernel Configuration

Kernel.org linux-6.6.X/6.1.X

1. Enable the following options in the kernel configuration file:

CONFIG_KEYS=y

CONFIG_KEYS_DEBUG_PROC_KEYS=y

CONFIG_SECURITY=y

CONFIG_SECURITY_NETWORK=y

CONFIG_SECURITY_NETWORK_XFRM=y

CONFIG_LSM_MMAP_MIN_ADDR=65536

CONFIG_SECURITY_SELINUX=y

CONFIG_SECURITY_SELINUX_BOOTPARAM=y

CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE=1

CONFIG_SECURITY_SELINUX_DISABLE=y

CONFIG_SECURITY_SELINUX_DEVELOP=y

CONFIG_SECURITY_SELINUX_AVC_STATS=y

CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE=1

CONFIG_DEFAULT_SECURITY_SELINUX=y

CONFIG_DEFAULT_SECURITY="selinux"

CONFIG_CRYPTO=y

CONFIG_CRYPTO_FIPS=y

CONFIG_CRYPTO_ALGAPI=y

CONFIG_CRYPTO_ALGAPI2=y

CONFIG_CRYPTO_AEAD=y

CONFIG_CRYPTO_AEAD2=y

CONFIG_CRYPTO_BLKCIPHER=y

CONFIG_CRYPTO_BLKCIPHER2=y

CONFIG_CRYPTO_HASH=y

CONFIG_CRYPTO_HASH2=y

CONFIG_CRYPTO_RNG=y

CONFIG_CRYPTO_RNG2=y

CONFIG_CRYPTO_PCOMP=y

CONFIG_CRYPTO_PCOMP2=y

CONFIG_CRYPTO_MANAGER=y

CONFIG_CRYPTO_MANAGER2=y

CONFIG_CRYPTO_NULL=y

CONFIG_CRYPTO_WORKQUEUE=y

CONFIG_CRYPTO_CRYPTD=y

CONFIG_CRYPTO_AUTHENC=y

CONFIG_CRYPTO_TEST=m

CONFIG_CRYPTO_CCM=y

CONFIG_CRYPTO_GCM=y

CONFIG_CRYPTO_SEQIV=y

CONFIG_CRYPTO_CBC=y

CONFIG_CRYPTO_CTR=y

CONFIG_CRYPTO_CTS=y

CONFIG_CRYPTO_ECB=y

Crypto Offload

Chelsio Unified Wire for Linux 184

CONFIG_CRYPTO_XTS=y

CONFIG_CRYPTO_HMAC=y

CONFIG_CRYPTO_GHASH=y

CONFIG_CRYPTO_MD4=m

CONFIG_CRYPTO_MD5=y

CONFIG_CRYPTO_SHA1=y

CONFIG_CRYPTO_SHA256=y

CONFIG_CRYPTO_SHA512=y

CONFIG_CRYPTO_AES=y

CONFIG_CRYPTO_AES_X86_64=y

CONFIG_CRYPTO_DEFLATE=y

CONFIG_CRYPTO_ZLIB=y

CONFIG_CRYPTO_LZO=y

CONFIG_CRYPTO_ANSI_CPRNG=y

CONFIG_CRYPTO_USER_API=y

CONFIG_CRYPTO_USER_API_HASH=y

CONFIG_CRYPTO_USER_API_SKCIPHER=y

CONFIG_CRYPTO_USER_API_RNG=y

CONFIG_CRYPTO_USER_API_AEAD=m

CONFIG_CRYPTO_HW=y

2. Compile and install the kernel, then boot into the new kernel and install the Chelsio Unified

Wire.

RHEL/Rocky/AlmaLinux 9.X/8.X/7.X, Ubuntu 22.04.X/20.04.X, Debian

12.X/11.X, RHEL 7.5/7.6 ARM, SLES 15 SP4

No additional kernel configuration is required.

Crypto Offload

Chelsio Unified Wire for Linux 185

 Software/Driver Installation

3.1. Pre-requisites

Ensure that SELinux and firewall are disabled.

3.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install Crypto driver.

[root@host~]# make crypto_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Crypto Offload

Chelsio Unified Wire for Linux 186

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

4.1. Inline

1. To load the Crypto Offload driver in Inline mode,

[root@host~]# modprobe t4_tom

2. Bring up the Chelsio network interface.

[root@host~]# ifconfig ethX up

Where ethX is the Chelsio interface.

4.2. Co-processor

1. To load the Crypto Offload driver in Co-processor mode (chcr).

[root@host~]# modprobe cxgb4

[root@host~]# modprobe chcr

2. Bring up the Chelsio network interface.

[root@host~]# ifconfig ethX up

Where ethX is the Chelsio interface.

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Crypto Offload

Chelsio Unified Wire for Linux 187

 Software/Driver Configuration and Fine-tuning

5.1. Configuring OpenSSL

OpenSSL v3.0.12 with kTLS support will be installed by the Unified Wire installer at

/usr/opensslv3/bin. Additionally, all the necessary openssl configuration files are updated

automatically.

Instead, if you wish to install the OpenSSL v3.0.12 with kTLS support and do the configuration,

follow the below mentioned steps:

1. Download the OpenSSL v3.0.12, compile with kTLS support and install it.

[root@host~]# wget https://www.openssl.org/source/openssl-3.0.12.tar.gz

[root@host~]# tar xf openssl-3.0.12.tar.gz

[root@host~]# cd openssl-3.0.12

[root@host~]# ./config shared enable-ktls --prefix=/root/sslv3-ktls --

openssldir=/root/sslv3-ktls -Wl,-R/root/sslv3-ktls/lib64

[root@host~]# make && make install

2. Update openssl.cnf to enable kTLS during runtime.

[root@host~]# vim /root/sslv3-ktls/openssl.cnf

…

[openssl_init]

providers = provider_sect

ssl_conf = ssl_section

[ssl_section]

system_default = system_default_section

[system_default_section]

options = ktls

Ensure that the following requirements are met for connections to be offloaded:

• TLS version should be v1.2

• Cipher should be AES128-GCM-SHA256

5.2. Inline TLS Offload

 Configure TLS Offload and TOE Ports

To configure Inline TLS Offload, the connection offload policy should be used with the required

TCP port numbers. Follow the steps mentioned below:

1. Create a new policy file and add the following line for each TCP port (to be TLS offloaded).

src or dst port <tcp_port> => offload tls mss 32 bind random

.

.

all => offload

Crypto Offload

Chelsio Unified Wire for Linux 188

The all => offload is added to ensure that the rest of the TCP ports will be regular TOE offloaded.

Example: To TLS offload TCP ports 443, 989, 1000, 1001, and 1002,

Alternatively, portrange can be used to define a range of TCP ports (to be TLS offloaded).

src or dst portrange <M-N> => offload tls mss 32 bind random

all => offload

Example: To TLS offload TCP ports 443-900, create the below policy file.

2. Compile the policy.

[root@host~]# cop -d -o <policy_out> <new_policy_file>

Crypto Offload

Chelsio Unified Wire for Linux 189

3. Apply the policy.

[root@host~]# cxgbtool <iface> policy <policy_out>

Upon applying the above policy, traffic on all the mentioned TCP ports are TLS offloaded, while

traffic on other TCP ports are TOE offloaded.

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

 Configuring and running Applications

The below sections assume that openssl with kTLS support is installed by Unified Wire Installer

at /usr/opensslv3 as mentioned in Configuring OpenSSL. If you wish to use your own openssl

with kTLS support, replace /usr/opensslv3 with the corresponding location.

• OpenSSL tool

1. Start TLS offload Server.

[root@host~]# cd /usr/opensslv3/bin

[root@host~]# ./openssl s_server -key <key_file> -cert <cert_file> -accept

<server_ip>:<port> -cipher AES128-GCM-SHA256 -WWW -4 -tls1_2

2. Start TLS offload Client.

[root@host~]# cd /usr/opensslv3/bin

[root@host~]# ./openssl s_time -connect <server_ip>:<port> -www /<file>

In case of IPv6, the address should be specified within [].

• Custom Applications

To compile custom applications using OpenSSL library,

[root@host~]# gcc -g -o <server/client output file> <server/client file> -

lcrypto -lssl -L/usr/opensslv3/lib64/

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

Crypto Offload

Chelsio Unified Wire for Linux 190

Client:

Server:

• nginx server

1. Download the latest stable version from nginx website.

2. Compile nginx with the OpenSSL library and install it.

[root@host~]# cd nginx-x.xx.x

[root@host~]# ./configure --prefix=/usr/local/nginx --with-http_ssl_module -

-with-http_v2_module --with-http_dav_module --with-cc-opt="-

DNGX_SSL_SENDFILE -DOPENSSL_API_COMPAT=10101 -I /usr/opensslv3/include" --

with-ld-opt="-L/usr/opensslv3/lib64 -Wl,-R/usr/opensslv3/lib64" && make &&

make install

3. Configure the nginx server by updating required settings in /usr/local/nginx/nginx.conf file.

4. Update the below in /usr/local/nginx/nginx.conf file.

 http {

 ...

 ssl_protocols TLSv1.2;

ssl_ciphers AES128-GCM-SHA256;

ssl_prefer_server_ciphers on;

 ...

 }

5. Load Chelsio Inline drivers and configure nginx server port as a TLS Offload port as

described in the Configure TLS Offload and TOE Ports section.

6. Start nginx server.

[root@host~]# ./usr/local/nginx/nginx

The nginx server will be Inline TLS offloaded now.

7. The Client can now connect to the Server and download the files.

 Inline TLS Counters

To verify whether Chelsio Inline Crypto is used, run the following command:

[root@host~]# cat /sys/kernel/debug/cxgb4/<PF4_id>/tls

Chelsio Inline TLS Stats

TLS PDU Tx: 32661534

TLS PDU Rx: 231039210

TLS Keys (DDR) Count: 48

http://nginx.org/en/download.html

Crypto Offload

Chelsio Unified Wire for Linux 191

5.3. Co-processor

To view the complete list of supported cryptographic algorithms, use the following command:

[root@host~]# cat /proc/crypto|grep -i chcr

The following applications can be offloaded by Chelsio Co-processor:

• Data at Rest

o Dmcrypt

o VeraCrypt

• TLS/SSL

o Nginx

• IPsec

o Ip xfrm

o Strongswan

 Co-processor TLS Offload

This section assumes that openssl with kTLS support is installed by the Unified Wire Installer at

/usr/opensslv3 as mentioned in the Configuring OpenSSL section. If you wish to use your own

openssl with kTLS support, replace /usr/opensslv3 with the corresponding location.

• nginx server

1. Download the latest stable version from the nginx website.

2. Compile and install nginx.

[root@host~]# cd nginx-x.xx.x

[root@host~]# ./configure --prefix=/usr/local/nginx --with-http_ssl_module --

with-http_v2_module --with-http_dav_module --with-cc-opt="-DNGX_SSL_SENDFILE

-DOPENSSL_API_COMPAT=10101 -I /usr/opensslv3/include" --with-ld-opt="-

L/usr/opensslv3/lib64 -Wl,-R/usr/opensslv3/lib64" && make && make install

3. Configure the nginx server by updating the required settings in /usr/local/nginx/nginx.conf

file.

4. Load the Chelsio Co-processor, Kernel TLS drivers and bring up the interface.

[root@host~]# modprobe tls

[root@host~]# modprobe chcr

[root@host~]# ifconfig ethX <IPv4/IPv6 address> up

5. Start nginx server.

[root@host~]# ./usr/local/nginx/nginx

The nginx server will be offloaded by Chelsio Co-processor now.

6. The Client can now connect to the Server and download the files.

http://nginx.org/en/download.html

Crypto Offload

Chelsio Unified Wire for Linux 192

 Co-processor IPsec Offload

Encryption and decryption processing for IPsec can be offloaded to T6 adapters by the co-

processor driver (chrc). Both Tunnel and Transport IPsec modes are supported with ESP and AH

protocols. The driver supports both Tx and Rx offload. Follow the steps mentioned below to

configure co-processor IPsec offload using ip xfrm.

1. Load the Chelsio Co-processor driver.

[root@host~]# modprobe chcr

2. Configure IP Alias on Chelsio interfaces for multiple tunnels (8 in this case).

[root@host~]# for i in `seq 1 8`; do ifconfig ethX:$i $i.0.0.1/24 up;done

3. Configure ip xfrm using below scripts.

DUT

for i in `seq 1 8`

do

 local_ip=$i.0.0.1

 remote_ip=$i.0.0.2

ip xfrm state add src $remote_ip dst $local_ip proto esp spi 0x54fa1f$i

reqid 16385 mode transport aead "rfc4106(gcm(aes))"

0x010203047aeaca3f87d060a12f4a4487d5a5c335 96 sel src 0.0.0.0/0 dst

0.0.0.0/0 replay-window 64 flag esn

ip xfrm state add src $local_ip dst $remote_ip proto esp spi 0x53fa1f$i

reqid 16386 mode transport aead "rfc4106(gcm(aes))"

0x010203047aeaca3f87d060a12f4a4487d5a5c335 96 sel src 0.0.0.0/0 dst

0.0.0.0/0 replay-window 64 flag esn

ip xfrm policy add src $local_ip dst $remote_ip dir out tmpl src $local_ip

dst $remote_ip proto esp reqid 16386 mode transport

ip xfrm policy add src $local_ip dst $remote_ip dir fwd tmpl src $local_ip

dst $remote_ip proto esp reqid 16385 mode transport

ip xfrm policy add src $local_ip dst $remote_ip dir in tmpl src $local_ip

dst $remote_ip proto esp reqid 16385 mode transport

done

PEER

for i in `seq 1 8`

do

 local_ip=$i.0.0.2

 remote_ip=$i.0.0.1

ip xfrm state add src $local_ip dst $remote_ip proto esp spi 0x54fa1f$i

reqid 16385 mode transport aead "rfc4106(gcm(aes))"

0x010203047aeaca3f87d060a12f4a4487d5a5c335 96 sel src 0.0.0.0/0 dst

0.0.0.0/0 replay-window 64 flag esn

Crypto Offload

Chelsio Unified Wire for Linux 193

ip xfrm state add src $remote_ip dst $local_ip proto esp spi 0x53fa1f$i

reqid 16386 mode transport aead "rfc4106(gcm(aes))"

0x010203047aeaca3f87d060a12f4a4487d5a5c335 96 sel src 0.0.0.0/0 dst

0.0.0.0/0 replay-window 64 flag esn

ip xfrm policy add src $local_ip dst $remote_ip dir out tmpl src $local_ip

dst $remote_ip proto esp reqid 16385 mode transport

ip xfrm policy add src $local_ip dst $remote_ip dir fwd tmpl src $local_ip

dst $remote_ip proto esp reqid 16386 mode transport

ip xfrm policy add src $local_ip dst $remote_ip dir in tmpl src $local_ip

dst $remote_ip proto esp reqid 16386 mode transport

done

4. The ip xfrm policies can be verified.

[root@host~]# ip xfrm state list

5. Traffic can be run on the tunnels.

 Co-processor counters

To verify whether Chelsio Co-processor is used by the applications, run the following command:

[root@host~]# cat /sys/kernel/debug/cxgb4/<PF4_id>/crypto

Chelsio Crypto Co-processor Stats

Cipher_ops: 64750285

Digest_ops: 13241

Aead_ops: 0

Completion: 64763501

Error: 0

Fallback: 0

IPSec Tx Inline: 0

Crypto Offload

Chelsio Unified Wire for Linux 194

5.4. Performance Tuning

Apply the performance settings mentioned in the Performance Tuning section in the Unified

Wire chapter before proceeding.

Inline-TLS

1. Run the performance tuning script to update few kernel parameters using sysctl and map

TOE queues to different CPUs.

[root@host~]# t4_perftune.sh -n -Q ofld -s

2. Ensure that the application sends 8k PDU for best performance.

Co-processor

1. Run the performance tuning script to update few kernel parameters using sysctl and map

crypto queues to different CPUs.

[root@host~]# t4_perftune.sh -n -Q crypto -s

Crypto Offload

Chelsio Unified Wire for Linux 195

 Software/Driver Unloading

To unload Crypto Offload driver in Co-processor mode, run the following command:

[root@host~]# rmmod chcr

To unload Crypto Offload driver in Inline mode, unload the network driver in TOE mode. Refer to

the Software/Driver Unloading section in Network (NIC/TOE) chapter for more information.

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 196

XV. Data Center Bridging (DCB)

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 197

 Introduction

Data Center Bridging (DCB) refers to a set of bridge specification standards, aimed to create a

converged Ethernet network infrastructure shared by all storage, data networking and traffic

management services. An improvement to the existing specification, DCB uses priority-based

flow control to provide hardware-based bandwidth allocation and enhances transport reliability.

One of DCB’s many benefits includes low operational cost, due to consolidated storage, server,

and networking resources, reduced heat and noise, and less power consumption.

Administration is simplified since the specifications enable transport of storage and networking

traffic over a single unified Ethernet network.

1.1. Hardware Requirements

 Supported adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR

 T62100-SO-OCP3

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3

 T6225-SO-CR

 T580-CR

 T580-LP-CR

 T580-SO-CR

 T580-OCP-SO

 T540-CR

 T540-LP-CR

 T540-SO-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-SO-CR

 T520-OCP-SO

 T520-BT

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 198

1.2. Software Requirements

 Linux Requirements

Currently, the DCB feature is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 199

 Software/Driver Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Build and install all drivers with DCB support.

[root@host~]# make dcbx=1 install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help. Note

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 200

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Before proceeding, ensure that Unified Wire is installed with DCB support as mentioned in

previous section. The switch ports need to be enabled with DCBX configuration (Class mapping,

ETS and PFC).

Upon loading the network/storage driver and interface bringup, firmware completes DCBX

negotiation with the switch.

[root@host~]# modprobe cxgb4

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig ethX up

[root@host~]# modprobe csiostor

The negotiated DCBX parameters can be reviewed at

/sys/kernel/debug/cxgb4/<PF4_id>/dcb_info

Example:

The storage driver (FCoE Full Offload Initiator) uses the DCBX negotiated parameters (ETS, PFC

etc.) without any further configuration. The network drivers (cxgb4, t4_tom) and iSCSI drivers

(cxgb4i, chiscsi) need further VLAN configuration to be setup, which is explained in the Running

NIC & iSCSI Traffic together with DCBx section.

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers:
Important

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 201

 Software/Driver Configuration and Fine-tuning

4.1. Configuring Cisco Nexus 5010 switch

 Configuring the DCB parameters

In this procedure, you may need to adjust some of the parameters to suit your environment, such

as VLAN IDs, Ethernet interfaces, and virtual Fibre Channel interfaces.

To enable PFC, ETS, and DCB functions on a Cisco Nexus 5010 series switch:

1. Open a terminal configuration setting.

switch# config terminal

switch(config)#

2. Configure qos class-maps and set the traffic priorities: NIC uses priority 0 and FcoE uses

priority 3.

switch(config)#class-map type qos class-nic

switch(config-cmap-qos)# match cos 0

switch(config-cmap-qos)# class-map type qos class-fcoe

switch(config-cmap-qos)# match cos 3

3. Configure queuing class-maps.

switch(config)#class-map type queuing class-nic

switch(config-cmap-que)#match qos-group 2

4. Configure network-qos class-maps.

switch(config)#class-map type network-qos class-nic

switch(config-cmap-nq)#match qos-group 2

5. Configure qos policy-maps.

switch(config)#policy-map type qos policy-test

switch(config-pmap-qos)#class type qos class-nic

switch(config-pmap-c-qos)#set qos-group 2

6. Configure queuing policy-maps and assign network bandwidth. Divide the network bandwidth

between FcoE and NIC traffic.

By default, the Cisco Nexus switch enables DCB functionality and configures PFC

for FCoE traffic making it no drop with bandwidth of 50% assigned to FCoE class of

traffic and another 50% for the rest (like NIC). If you wish to configure custom

bandwidth, then follow the procedure below.

Note

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 202

switch(config)#policy-map type queuing policy-test

switch(config-pmap-que)#class type queuing class-nic

switch(config-pmap-c-que)#bandwidth percent 50

switch(config-pmap-c-que)#class type queuing class-fcoe

switch(config-pmap-c-que)#bandwidth percent 50

switch(config-pmap-c-que)#class type queuing class-default

switch(config-pmap-c-que)#bandwidth percent 0

7. Configure network-qos policy maps and set up the PFC for no-drop traffic class.

switch(config)#policy-map type network-qos policy-test

switch (config-pmap-nq)#class type network-qos class-nic

switch(config-pmap-nq-c)#pause no-drop

8. Apply the new policy (PFC on NIC and FcoE traffic) to the entire system.

switch(config)#system qos

switch(config-sys-qos)#service-policy type qos input policy-test

switch(config-sys-qos)#service-policy type queuing output policy-test

switch(config-sys-qos)#service-policy type queuing input policy-test

switch(config-sys-qos)#service-policy type network-qos policy-test

 Configuring the FCoE/FC Ports

In this procedure, you may need to adjust some of the parameters to suit your environment, such

as VLAN IDs, Ethernet interfaces, and virtual Fibre Channel interfaces.

1. The following steps enable FCoE services on a particular VLAN and does a VSAN-VLAN

mapping. Need not do these steps every time, unless a new mapping has to be created.

switch(config)# vlan 2

switch(config-vlan)# fcoe vsan 2

switch(config-vlan)#exit

2. The following steps help in creating a virtual fibre channel (VFC) and binds that VFC to an

Ethernet interface so that the Ethernet port begins functioning as a FCoE port.

switch(config)# interface vfc 13

switch(config-if)# bind interface ethernet 1/13

switch(config-if)# no shutdown

switch(config-if)# exit

switch(config)#vsan database

switch(config-vsan-db)# vsan 2

switch(config-vsan-db)# vsan 2 interface vfc 13

switch(config-vsan-db)# exit

By default, FCoE is set to pause no drop. In such a trade off, one may want to set

NIC to drop instead.
Note

If you are binding the VFC to a MAC address instead of an ethernet port, then

ensure the ethernet port is part of both default VLAN and FCoE VLAN.
Note

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 203

3. Assign VLAN ID to the Ethernet port on which FCoE service was enabled in step1.

switch(config)# interface ethernet 1/13

switch(config-if)# switchport mode trunk

switch(config-if)# switchport trunk allowed vlan 2

switch(config-if)# no shutdown

switch(config)#exit

4. Enabling DCB.

switch(config)# interface ethernet 1/13

switch(config-if)# priority-flow-control mode auto

switch(config-if)# flowcontrol send off

switch(config-if)# flowcontrol receive off

switch(config-if)# lldp transmit

switch(config-if)# lldp receive

switch(config-if)# no shutdown

5. On the FC Ports, if a FC target is connected then perform the following steps:

switch(config)#vsan database

switch(config-vsan-db)#vsan 2

switch(config-vsan-db)# vsan 2 interface fc 2/2

switch(config-vsan-db)#exit

switch(config)interface fc 2/2

switch(config-if)# switchport mode auto

switch(config-if)# switchport speed auto

switch(config-if)# no shutdown.

6. If you have not created a zone, then ensure the default-zone permits the VSAN created,

otherwise the initiator and the target on that particular VSAN although FLOGI’d into the switch

will not talk to each other. To enable it, execute the below command:

switch(config)# zone default-zone permit vsan 2

4.2. Configuring the Brocade 8000 switch

1. Configure LLDP for FCoE. Example of configuring LLDP for 10-Gigabit Ethernet interface.

switch(config)#protocol lldp

switch(conf-lldp)#advertise dcbx-fcoe-app-tlv

switch(conf-lldp)#advertise dcbx-fcoe-logical-link-tlv

2. Create a CEE Map to carry LAN and SAN traffic if it does not exist. Example of creating a

CEE map.

switch(config)# cee-map default

switch(conf-cee-map)#priority-group-table 1 weight 40 pfc

switch(conf-cee-map)#priority-group-table 2 weight 60

switch(conf-cee-map)#priority-table 2 2 2 1 2 2 2 2

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 204

3. Configure the CEE interface as a Layer 2 switch port. Example of configuring the switch port

as a 10-Gigabit Ethernet interface.

switch(config)#interface tengigabitethernet 0/16

switch(config-if-te-0/16)#switchport

switch(config-if-te-0/16)#no shutdown

switch(config-if)#exit

4. Create an FCoE VLAN and add an interface to it. Example of creating a FCoE VLAN and

adding a single interface.

switch(config)#vlan classifier rule 1 proto fcoe encap ethv2

switch(config)#vlan classifier rule 2 proto fip encap ethv2

switch(config)#vlan classifier group 1 add rule 1

switch(config)#vlan classifier group 1 add rule 2

switch(config)#interface vlan 1002

switch(conf-if-vl-1002)#fcf forward

switch(conf-if-vl-1002)#interface tengigabitethernet 0/16

switch(config-if-te-0/16)#switchport

switch(config-if-te-0/16)#switchport mode converged

switch(config-if-te-0/16)#switchport converged allowed vlan add 1002

switch(config-if-te-0/16)#vlan classifier activate group 1 vlan 1002

switch(config-if-te-0/16)#cee default

switch(config-if-te-0/16)#no shutdown

switch(config-if-te-0/16)#exit

5. Save the Configuration.

switch#copy running-config startup-config

Unlike cisco, only one VLAN ID can carry FCoE traffic for now on Brocade 8000.

It is their limitation.
Note

Data Center Bridging (DCB)

Chelsio Unified Wire for Linux 205

 Running NIC & iSCSI Traffic together with DCBx

Use the following procedure to run NIC and iSCSI traffic together with DCBx enabled.

1. Identify the VLAN priority configured for NIC and iSCSI class of traffic on the switch.

2. Create VLAN interfaces for running NIC and iSCSI traffic and configure corresponding VLAN

priority.

Example:

The Switch is configured with a VLAN priority of 2 and 5 for NIC and iSCSI class of traffic

respectively. NIC traffic is run on VLAN10, and iSCSI traffic is run on VLAN20.

Assign proper VLAN priorities on the interface (here eth5), using the following commands on the

host machine:

[root@host~]# vconfig set_egress_map eth5.10 0 2

[root@host~]# vconfig set_egress_map eth5.20 5 5

Refer to the iSCSI PDU Offload Initiator chapter to configure iSCSI Initiator. Note

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 206

XVI. FCoE Full Offload Initiator

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 207

 Introduction

Fibre Channel over Ethernet (FCoE) is a mapping of Fibre Channel over selected full duplex IEEE

802.3 networks. The goal is to provide I/O consolidation over Ethernet, reducing network

complexity in the Datacenter. Chelsio FCoE initiator maps Fibre Channel directly over Ethernet

while being independent of the Ethernet forwarding scheme. The FCoE protocol specification

replaces the FC0 and FC1 layers of the Fibre Channel stack with Ethernet. By retaining the native

Fibre Channel constructs, FCoE will integrate with existing Fibre Channel networks and

management software.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the FCoE full offload Initiator driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 208

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 209

 Software/Driver Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install FCoE full offload initiator driver.

[root@host~]# make fcoe_full_offload_initiator_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 210

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

 To load the driver, execute the following:

[root@host~]# modprobe csiostor

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 211

 Software/Driver Configuration and Fine-tuning

4.1. Configuring Cisco Nexus 5010 and Brocade switch

To configure various Cisco and Brocade switch settings, refer to the Software/Driver Configuration

and Fine-tuning section of Data Center Bridging (DCB) chapter.

4.2. FCoE fabric discovery verification

 Verifying Local Ports

Once connected to the switch, use the following command to see if the FIP has gone through and

a VN_Port MAC address has been assigned.

Verify if all the FCoE ports are online/ready and a successful FIP has taken place using the

following command. The wwpn and state of the initiator local port can be found under sysfs.

[root@host~]# cat /sys/class/fc_host/hostX/port_name

Alternatively, the local port information can also be found using:

[root@host~]# cat /sys/kernel/debug/csiostor/<pci_id>/lnodes

• The hosts under fc_host depends on the number of ports on the adapter used.

• Inorder to identify chelsio fc_host from other vendor fc_host, the WWPN

always begins with 0x5000743

Note

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 212

 Verifying the target discovery

To view the list of targets discovered on a particular FCoE port, follow the below mentioned steps:

1. Determine the WWPN of the initiator local port under sysfs. The hosts under fc_host

depends on the number of ports on the adapter used.

[root@host~]# cat /sys/class/fc_host/hostX/port_name

2. After finding the localport, go to the corresponding remote port under sysfs # cat

/sys/class/fc_remote_ports/rport-X:B:R where X is the Host ID, B is the bus ID and R is

the remote port.

R can correspond to NameServer, Management Server and other initiator ports

logged in to the switch and targets.
Note

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 213

Alternatively, the local ports can also be found using:

[root@host~]# cat /sys/kernel/debug/csiostor/<pci_id>/lnodes

After finding out the WWPN of the local node, to verify the list of discovered targets, use the

following command.

[root@host~]# cat /sys/kernel/debug/csiostor/<pci_id>/rnodes

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 214

4.3. Formatting the LUNs and Mounting the Filesystem

 Use lsscsi -g to list the LUNs discovered by the initiator.

[root@host~]# lsscsi –g

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 215

Alternatively, the LUNs discovered by the Chelsio FCoE initiators can be accessed through the

easily-identifiable ‘udev’ path device files like:

[root@host~]# ls /dev/disk/by-path/pci-0000:04:00.0-csio-fcoe

<local_wwpn>:<remote_wwpn>:<lun_wwn>

4.4. Creating Filesystem

Create an ext3 filesystem using the following command:

[root@host~]# mkfs.ext3 /dev/sdx

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 216

4.5. Mounting the formatted LUN

The formatted LUN can be mounted on the specified mountpoint using the following command:

[root@host~]# mount /dev/sdx /mnt

FCoE Full Offload Initiator

Chelsio Unified Wire for Linux 217

 Software/Driver Unloading

To unload the driver, run the following command:

[root@host~]# modprobe -r csiostor

If multipath services are running, unload of FCoE driver is not possible. Stop the

multipath service and then unload the driver.
Note

Offload Bonding

Chelsio Unified Wire for Linux 218

XVII. Offload Bonding

Offload Bonding

Chelsio Unified Wire for Linux 219

 Introduction

The Chelsio Offload bonding driver provides a method to aggregate multiple network interfaces

into a single logical bonded interface effectively combining the bandwidth into a single connection.

It also provides redundancy in case one of link fails.

The traffic running over the bonded interface can be fully offloaded to the adapter, thus freeing

the CPU from TCP/IP overhead.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the Offload Bonding driver is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

Offload Bonding

Chelsio Unified Wire for Linux 220

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Offload Bonding

Chelsio Unified Wire for Linux 221

 Software/Driver Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install Chelsio Offload bonding driver.

[root@host~]# make bonding_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Offload Bonding

Chelsio Unified Wire for Linux 222

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

To load the driver (with offload support), run the following command:

[root@host~]# modprobe bonding

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Offload Bonding

Chelsio Unified Wire for Linux 223

 Software/Driver Configuration and Fine-tuning

4.1. Offloading TCP traffic over a bonded interface

The Chelsio Offload Bonding driver supports all the bonding modes in NIC Mode. In offload mode

(t4_tom loaded) however, only the balance-rr (mode=0), active-backup (mode=1), balance-

xor (mode=2) and 802.3ad (mode=4) modes are supported.

To offload TCP traffic over a bond interface, use the following method:

1. Load the network driver with TOE support.

[root@host~]# modprobe t4_tom

2. Create a bond interface.

[root@host~]# modprobe bonding mode=1 miimon=100 max_bonds=1

3. Bring up the bond interface and enslave the interfaces to the bond.

[root@host~]# ifconfig bond0 up

[root@host~]# ifenslave bond0 ethX ethY

4. Assign IPv4/IPv6 address to the bond interface.

[root@host~]# ifconfig bond0 X.X.X.X/Y

[root@host~]# ifconfig bond0 inet6 add <128-bit IPv6 Address> up

5. Disable FRTO on the PEER.

[root@host~]# sysctl -w net.ipv4.tcp_frto=0

6. Ping the PEER interface and verify the successful connectivity over the bond interface.

All TCP traffic will be offloaded over the bond interface now.

ethX and ethY are interfaces of the same adapter. Note

Offload Bonding

Chelsio Unified Wire for Linux 224

 Software/Driver Unloading

To unload the driver, run the following command:

[root@host~]# rmmod bonding

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 225

XVIII. Offload Multi-Adapter Failover (MAFO)

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 226

 Introduction

Chelsio’s adapters offer a complete suite of high reliability features, including adapter-to-adapter

failover. The patented offload Multi-Adapter Failover (MAFO) feature ensures all offloaded traffic

continue operating seamlessly in the face of port failure.

MAFO allows aggregating network interfaces across multiple adapters into a single logical bonded

interface, providing effective fault tolerance.

The traffic running over the bonded interface can be fully offloaded to the adapter, thus freeing

the CPU from TCP/IP overhead.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the Offload Multi-Adapter Failover driver is available for the following kernel versions:

• Portions of this software are covered under US Patent, Failover and

migration for full-offload network interface devices: US 8346919 B1

• Use of the covered technology is strictly limited to Chelsio ASIC-based

soutions.

Important

http://www.directorypatent.com/US/08346919.html
http://www.directorypatent.com/US/08346919.html

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 227

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

 Driver Requirements

Multi-adapter failover feature will work for Link Down events caused by:

• Cable unplug on the bonded interface.

• Bringing the corresponding switch port down.

This feature does not work if the bonded interfaces are administratively taken

down.
Note

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 228

 Software/Driver Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install MAFO feature.

[root@host~]# make bonding_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 229

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

To load the driver (with offload support), run the following command:

[root@host~]# modprobe bonding

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 230

 Software/Driver Configuration and Fine-tuning

4.1. Offloading TCP traffic over a bonded interface

The Chelsio MAFO driver supports only the active-backup (mode=1) mode. To offload TCP

traffic over a bond interface, use the following method:

1. Load the network driver with TOE support.

[root@host~]# modprobe t4_tom

2. Create a bond interface.

[root@host~]# modprobe bonding mode=1 miimon=100 max_bonds=1

3. Bring up the bond interface and enslave the interfaces to the bond.

[root@host~]# ifconfig bond0 up

[root@host~]# ifenslave bond0 ethX ethY

4. Assign IPv4/IPv6 address to the bond interface.

[root@host~]# ifconfig bond0 X.X.X.X/Y

[root@host~]# ifconfig bond0 inet6 add <128-bit IPv6 Address> up

5. Disable TCP timestamps.

[root@host~]# sysctl -w net.ipv4.tcp_timestamps=0

6. Disable FRTO on the PEER.

[root@host~]# sysctl -w net.ipv4.tcp_frto=0

7. Ping the PEER interface and verify the successful connectivity over the bond interface.

All TCP traffic will be offloaded over the bond interface now and fail-over will happen in case of

link-down event.

ethX and ethY are interfaces of different adapters. Note

Offload Multi-Adapter Failover (MAFO)

Chelsio Unified Wire for Linux 231

 Software/Driver Unloading

To unload the driver, run the following command:

[root@host~]# rmmod bonding

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 232

XIX. UDP Segmentation Offload and Pacing

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 233

 Introduction

Chelsio’s Terminator series of adapters provide UDP segmentation offload and per-stream rate

shaping to drastically lower server CPU utilization, increase content delivery capacity, and

improve service quality.

Tailored for UDP content, UDP Segmentation Offload (USO) technology moves the processing

required to packetize UDP data and rate control its transmission from software running on the

host to the network adapter. USO increases performance and dramatically reduces CPU

overhead, allowing significantly higher capacity using the same server hardware. Without USO

support, UDP server software running on the host needs to packetize payload into frames,

process each frame individually through the network stack and schedule individual frame

transmission, resulting in millions of system calls, and packet traversals through all protocol layers

in the operating system to the network device. In contrast, USO implements the network protocol

stack in the adapter, and the host server software simply hands off unprocessed UDP payload in

large I/O buffers to the adapter.

The following figure compares the traditional datapath on the left to the USO datapath on the

right, showing how per-frame processing is eliminated. In this example, the video server pushes

5 frames at a time. In an actual implementation, a video server pushes 50 frames or more in each

I/O, drastically lowering the CPU cycles required to deliver the content.

Pacing is beneficial for several reasons, one example is for Content Delivery Networks

(CDNs)/Video On Demand (VOD) providers to avoid receive buffer overflows, smooth out network

traffic, or to enforce Service Level Agreements (SLAs).

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 234

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the UDP Segmentation Offload and Pacing driver is available for the following kernel

versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 235

 Software/Driver Installation

The offload drivers support UDP Segmentation Offload with limited number of connections (1024

connections). To build and install UDP Offload drivers which support large number of offload

connections (approx 10K):

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Run the following command:

[root@host~]# make udp_offload_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

10K UDP Segmentation offload connections currently not supported on T6. Note

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 236

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

The driver must be loaded by the root user. Any attempt to load the driver as a regular user will

fail.

 Run the following commands to load the drivers.

[root@host~]# modprobe cxgb4

[root@host~]# modprobe t4_tom

Though normally associated with the Chelsio TCP Offload engine, the t4_tom module is required

to allow for the proper redirection of UDP socket calls.

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 237

 Software/Driver Configuration and Fine-tuning

4.1. Modifying the Application

To use the UDP offload functionality, the application needs to be modified. Follow the steps

mentioned below:

1. Determine the UDP socket file descriptor in the application through which data is sent.

2. Declare and initialize two variables in the application.

int fs=1316;

int cl=1;

Here,

• fs is the UDP packet payload size in bytes that is transmitted on the wire. The minimum

value of fs is 256 bytes.

• cl is the UDP traffic class (scheduler-class-index) that the user wishes to assign the data

stream to. This value needs to be in the range of 0 to 14 for T4/T5 adapters and 0 to 30 for

T6 adapters.

The application functions as per the parameters set for that traffic class.

3. Add socket option definitions.

To use setsockopt() to set the options to the UDP socket, set the following three definitions:

• SO_FRAMESIZE used for setting frame size, which has the value 291.

• SOL_SCHEDCLASS used for setting UDP traffic class, which has the value 290.

• IPPROTO_UDP used for setting the type of IP Protocol.

define SO_FRAMESIZE 291

define SOL_SCHEDCLASS 290

define IPPROTO_UDP 17

4. Use the setsockopt() function to set socket options.

//Get the UDP socket descriptor variable

setsockopt (sockfd , IPPROTO_UDP, SO_FRAMESIZE, &fs, sizeof(fs));

setsockopt (sockfd , IPPROTO_UDP, SOL_SCHEDCLASS, &cl, sizeof(cl));

Here:

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 238

• sockfd : The file descriptor of the UDP socket

• &fs / &cl : Pointer to the framesize and class variables

• sizeof(fs) / sizeof(cl) : The size of the variables

5. Now, compile the application.

 UDP offload functionality for RTP data

For the RTP data, the video server application sends the initial sequence number and the RTP

payload. The USO engine segments the payload data, increments the sequence number, and

sends out the data.

In order to use the UDP offload functionality for RTP data, make the following additions to the

steps mentioned above:

1. In step 2, declare and initialize a new variable in the application.

int rtp_header_size=16;

Here, rtp_header_size is the RTP header size in bytes that the application sends.

2. In step 3, define a new macro, UDP_RTPHEADERLEN used for setting RTP header length

with the value 292.

define UDP_RTPHEADERLEN 292

3. In step 4, define a new socket option.

setsockopt (sockfd,17,UDP_RTPHEADERLEN,&rtp_header_size,

sizeof(rtp_header_size));

Here,

• &rtp_header_size : pointer to the RTP header length variable

• sizeof(rtp_header_size) : the size of the RTP header length variable

4.2. Configuring UDP Pacing

Now that the application has been modified to associate the application’s UDP socket to a

particular UDP traffic class, the pacing of that socket’s traffic can be set using the cxgbtool utility.

1. Bring up the network interface.

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 239

[root@host~]# ifconfig <ethX> up

2. Run the following command.

[root@host~]# cxgbtool <ethX> sched-class params type packet level cl-rl

mode flow rate-unit bits rate-mode absolute channel <Channel No.> class

<scheduler-class-index> max-rate <maximum-rate> pkt-size <Packet size>

Here,

• ethX is the Chelsio interface

• Channel No. is the port on which data is flowing (0-3)

• scheduler-class-index is the UDP traffic class (0-14 for T4/T5 adapters and 0-30 for T6

adapters) set in the SOL_SCHEDCLASS socket option in the application in section 4.1.

• maximum-rate is the bit rate (Kbps) for this UDP stream. This value should be in the range

of 50 Kbps to 50 Mbps for T4 adapters. For T5/T6 adapters, the value should be in the

range of 100 kbps to 1 Gbps.

• Packet size is the UDP packet payload size in bytes; it should be equal to the value set in

the SO_FRAMESIZE socket option in the application in section 4.1.

Example:

The user wants to transfer UDP data on port 0 of the adapter using the USO engine. The

application has been modified as shown in section 4.1. To set a bit rate of 10Mbps for traffic

class 1 with payload size of 1316 on port 0, the following invocation of cxgbtool is used:

[root@host~]# cxgbtool ethX sched-class params type packet level cl-rl mode

flow rate-unit bits rate-mode absolute channel 0 class 1 max-rate 10000

pkt-size 1316

To get an accurate bit rate per class, data sent by the application to the sockets

should be a multiple of the value set for the “pkt-size” parameter.

In above example, IO size sent by application should be a multiple of 1316.

Linux Unified Wire currently supports 10240 offload UDP connections. If the

application needs to establish more than 10240 UDP connections, it can check the

return code of ENOSPC from a send() or sendto() call and close this socket and open

a new one that uses the kernel UDP stack.

Note

Note

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 240

4.3. Enabling Offload

Load the offload drivers and bring up the Chelsio interface.

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig ethX <IP> up

The traffic will be offloaded over the Chelsio interface now. To see the number of connections

offloaded, run the following command:

[root@host~]# cat /sys/kernel/debug/cxgb4/<bus-id>/tids

Where,

UOTID is the number of UDP offload connections.

UDP Segmentation Offload and Pacing

Chelsio Unified Wire for Linux 241

 Software/Driver Unloading

Reboot the system to unload the driver. To unload without rebooting, refer to the Unloading the

TOE driver section of Network (NIC/TOE) chapter.

Offload IPv6

Chelsio Unified Wire for Linux 242

XX. Offload IPv6

Offload IPv6

Chelsio Unified Wire for Linux 243

 Introduction

The growth of the Internet has created a need for more addresses than possible with IPv4. Internet

Protocol version 6 (IPv6) is a version of the Internet Protocol (IP) designed to succeed the Internet

Protocol version 4 (IPv4).

Chelsio’s Offload IPv6 feature provides support to fully offload IPv6 traffic to the Unified Wire

adapter.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the Offload IPv6 feature is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

Offload IPv6

Chelsio Unified Wire for Linux 244

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Offload IPv6

Chelsio Unified Wire for Linux 245

 Software/Driver Installation

2.1. Pre-requisites

Ensure that the following requirements are met before driver installation:

• IPv6 must be enabled in your system (enabled by default).

• Unified Wire must be installed with IPv6 support as explained in the Unified Wire chapter.

2.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install Unified Wire with IPv6 support.

[root@host~]# make install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Offload IPv6

Chelsio Unified Wire for Linux 246

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

After installing Unified Wire package and rebooting the host, load the NIC (cxgb4) and TOE

(t4_tom) drivers. The drivers must be loaded by the root user. Any attempt to load the drivers as

a regular user will fail.

[root@host~]# modprobe cxgb4

[root@host~]# modprobe t4_tom

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Offload IPv6

Chelsio Unified Wire for Linux 247

 Software/Driver Configuration and Fine-tuning

1. Load the Offload capable drivers.

[root@host~]# modprobe t4_tom

2. Bring up the interface and ensure that IPv6 Link Local address is present.

[root@host~]# ifconfig ethX up

On some distributions, ONBOOT=”yes” should be added to interface network script for the

interface to come up automatically with IPv6 Link Local address.

3. Configure the the required IPv6 address.

[root@host~]# ifconfig ethX inet6 add <IPv6 address>

4. All the IPv6 traffic over the Chelsio interface will be offloaded now. To see the number of

connections offloaded, run the following command:

[root@host~]# cat /sys/kernel/debug/cxgb4/<bus-id>/tids

Offload IPv6

Chelsio Unified Wire for Linux 248

 Software/Driver Unloading

5.1. Unloading the NIC Driver

To unload the NIC driver, run the following command:

[root@host~]# rmmod cxgb4

5.2. Unloading the TOE Driver

Reboot the system to unload the TOE driver. To unload without rebooting, refer to the Unloading

the TOE driver section of Network (NIC/TOE) chapter.

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 249

XXI. WD Sniffing and Tracing

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 250

 Theory of Operation

The objective of these utilities (wd_sniffer and wd_tcpdump_trace) is to provide sniffing and

tracing capabilities by making use of the Chelsio adapter’s hardware features.

 Sniffer is a tool to measure bandwidth and involves targeting specific multicast traffic and

sending it directly to user space.

1. Get a Queue (raw QP) idx.

2. Program a filter to redirect specific traffic to the raw QP queue.

 Tracer - All tapped traffic is forwarded to user space and also pushed back on the wire through

the internal loop back mechanism.

1. Get a Queue (raw QP) idx.

2. Set the adapter in loop back.

3. Connect Client A and B to ports 0 and 1 or ports 2 and 3.

4. Enable tracing.

In either mode, the targeted traffic bypasses the kernel TCP/IP stack and is delivered directly to

user space by means of an RX queue.

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 251

Schematic diagram of sniffer and tracer

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T580-CR

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 252

 T580-LP-CR

 T540-CR

 T540-LP-CR

 T540-BT

 T520-CR

 T520-LL-CR

 T520-BT

1.2. Software Requirements

 Linux Requirements

Currently, the WD Sniffing and Tracing utility is available for the following kernel version:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 253

 Software/Driver Installation

2.1. Pre-requisites

Ensure that the following requirement is met before driver installation:

• IOMMU should be disabled by adding intel_iommu/amd_iommu=off to the grub/grub2 kernel

command line.

2.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install Sniffer and Tracer utilities and iWARP driver.

[root@host~]# make sniffer_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 254

 Usage

3.1. Installing Basic Support

iw_cxgb4 (Chelsio iWARP driver) and cxgb4 (Chelsio NIC driver) drivers should be compiled and

loaded before running the utilities. Refer to the Software/Driver Loading section for each driver

and follow the instructions mentioned before proceeding.

3.2. Using Sniffer (wd_sniffer)

1. Setup

Wire filter sniffing requires 2 systems with one machine having a Chelsio card.

The machines should be setup in the following manner:

 Machine A <---------> Machine B

 192.168.1.100 192.168.1.200

2. Procedure

On the Device Under Test (DUT), start sniffer.

[root@host~]# wd_sniffer -T 20 -s 1000 -I <MAC address of interface to

sniff>

Start traffic on the PEER and watch the sniffer.

The sniffer will receive all packets as fast as possible, update the packet count, and then discard

the data. Performance is a full 10Gbps for packet size 1000.

3.3. Using Tracer (wd_tcpdump_trace)

1. Setup

Wire tapping requires three systems with one machine having a Chelsio card with two or more

ports. The machines should be set up in the following manner:

WD Sniffing and Tracing

Chelsio Unified Wire for Linux 255

 DUT: Machine B

PEER: Machine A <-----> (port 0) (port 1) <-----> PEER: Machine C

192.168.1.100 IP-dont-care IP-dont-care 192.168.1.200

2. Procedure

Run wd_tcpdump_trace -i iface on the command prompt where iface is one of the interfaces

whose traffic you want to trace. In the above diagram it is port 0 or port 1.

[root@host~]# wd_tcpdump_trace -i <iface>

Use any tool (like ping or ssh) to run traffic between machines A and B. The traffic should

successfully make it from end to end and wd_tcpdump_trace on the DUT should show the tapped

traffic. The below options can be provided additionally to capture more packets.

[root@host~]# wd_tcpdump_trace -i <iface> -s 64 -B 1024000 -w capture.pcap

 Refer to wd_tcpdump_trace -h for more information on the above options. Note

Classification and Filtering

Chelsio Unified Wire for Linux 256

XXII. Classification and Filtering

Classification and Filtering

Chelsio Unified Wire for Linux 257

 Introduction

Classification and Filtering feature enhances network security by controlling incoming traffic as

they pass through the network interface based on source and destination addresses, protocol,

source and receiving ports, or the value of some status bits in the packet. This feature can be

used in the ingress path to:

• Steer ingress packets that meet ACL (Access Control List) accept criteria to a particular

receive queue.

• Switch (proxy) ingress packets that meet ACL accept criteria to an output port, with

optional header rewrite.

• Drop ingress packets that meet ACL accept criteria.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3*

 T6225-SO-CR*

 T580-CR

 T580-LP-CR

 T580-SO-CR*

 T580-OCP-SO*

 T540-CR

 T540-LP-CR

 T540-SO-CR*

 T540-BT

 T520-CR

 T520-LL-CR

 T520-SO-CR*

 T520-OCP-SO*

 T520-BT

* Hash filter not supported.

Classification and Filtering

Chelsio Unified Wire for Linux 258

1.2. Software Requirements

 Linux Requirements

Currently, the Classification and Filtering feature is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Classification and Filtering

Chelsio Unified Wire for Linux 259

 LE-TCAM Filters

The default (Unified Wire) configuration tuning option allows you to create LE-TCAM filters, which

has a limit of 496 for T5 and 560 for T6 adapters. For T5 adapters, all available filter indices can

be optionally configured as high priority. For T6 adapters, the following filter indices are available:

• High priority indices (PRIO): 0 to X

• Normal indices: X+1 to X+1+495

Where X is the upper limit in the HPFTID range, mentioned in the tids file

(/sys/kernel/debug/cxgb4/<bus-id>/tids).

For example, if the upper hpftid limit is 63, then high priority indices will be from 0 to 63 and normal

indices will be from 64 to 559. It is mandatory to add prio 1 when creating high priority filter rules.

2.1. Configuration

 Filter Modes

The Classification and Filtering feature is configured by specifying the filter modes in the firmware

configuration file (t6-config.txt for T6 adapters; t5-config.txt for T5 adapters) located in

/lib/firmware/cxgb4/. The following filter tuples are present in filter modes:

fcoe : Fibre Channel over Ethernet frames
port : Packet ingress physical port number
vnic_id :VF ID in MPS TCAM (Currently not supported) and outer VLAN ID,

 Encapsulation
vlan : Inner VLAN ID
Tos : Type of Service
protocol : IP protocol number (ICMP=1, TCP=6, UDP=17, etc)
Ethertype : Layer 2 EtherType
Macmatch : MAC index in MPS TCAM
mpshittype : MAC address "match type" (none, unicast, multicast, promiscuous, broadcast)
fragmentation : Fragmented IP packets

T6 SO adapters currently do not support high priority indices. Therefore only 496

LE-TCAM filters can be created.
Note

Adapter initialization will fail if filterMask contains a tuple which is not present in

filterMode.

Note

Classification and Filtering

Chelsio Unified Wire for Linux 260

 Supported Filter Combinations

The following combination is set by default and packets will be matched accordingly:

• For T5/T6:

filterMode = fcoemask, srvrsram, fragmentation, mpshittype, protocol, vlan,

port, fcoe

• For T4:

filterMode = fragmentation, mpshittype, protocol, vlan, port, fcoe

Serial # Filter Combination

1 fragmentation, mpshittype, macmatch, ethertype, protocol, port

2 fragmentation, mpshittype, macmatch, ethertype, protocol, fcoe

3 fragmentation, mpshittype, macmatch, ethertype, tos, port

4 fragmentation, mpshittype, macmatch, ethertype, tos, fcoe

5 fragmentation, mpshittype, macmatch, ethertype, port, fcoe

6 fragmentation, mpshittype, macmatch, protocol, tos, port, fcoe

7 fragmentation, mpshittype, macmatch, protocol, vlan, fcoe

8 fragmentation, mpshittype, macmatch, protocol, vnic_id, fcoe

9 fragmentation, mpshittype, macmatch, tos, vlan, fcoe

10 fragmentation, mpshittype, macmatch, tos, vnic_id, fcoe

11 fragmentation, mpshittype, macmatch, vlan, port, fcoe

12 fragmentation, mpshittype, macmatch, vnic_id, port, fcoe

13 fragmentation, mpshittype, ethertype, protocol, tos, port, fcoe

14 fragmentation, mpshittype, ethertype, vlan, port

15 fragmentation, mpshittype, ethertype, vlan, fcoe

16 fragmentation, mpshittype, ethertype, vnic_id, port

17 fragmentation, mpshittype, ethertype, vnic_id, fcoe

18 fragmentation, mpshittype, protocol, tos, vlan, port

19 fragmentation, mpshittype, protocol, tos, vlan, fcoe

20 fragmentation, mpshittype, protocol, tos, vnic_id, port

21 fragmentation, mpshittype, protocol, tos, vnic_id, fcoe

22 fragmentation, mpshittype, protocol, vlan, port, fcoe

23 fragmentation, mpshittype, protocol, vnic_id, port, fcoe

24 fragmentation, mpshittype, tos, vlan, port, fcoe

25 fragmentation, mpshittype, tos, vnic_id, port, fcoe

26 fragmentation, mpshittype, vlan, vnic_id, fcoe

27 fragmentation, macmatch, ethertype, protocol, port, fcoe

28 fragmentation, macmatch, ethertype, tos, port, fcoe

29 fragmentation, macmatch, protocol, vlan, port, fcoe

30 fragmentation, macmatch, protocol, vnic_id, port, fcoe

31 fragmentation, macmatch, tos, vlan, port, fcoe

32 fragmentation, macmatch, tos, vnic_id, port, fcoe

33 fragmentation, ethertype, vlan, port, fcoe

Classification and Filtering

Chelsio Unified Wire for Linux 261

34 fragmentation, ethertype, vnic_id, port, fcoe

35 fragmentation, protocol, tos, vlan, port, fcoe

36 fragmentation, protocol, tos, vnic_id, port, fcoe

37 fragmentation, vlan, vnic_id, port, fcoe

38 mpshittype, macmatch, ethertype, protocol, port, fcoe

39 mpshittype, macmatch, ethertype, tos, port, fcoe

40 mpshittype, macmatch, protocol, vlan, port

41 mpshittype, macmatch, protocol, vnic_id, port

42 mpshittype, macmatch, tos, vlan, port

43 mpshittype, macmatch, tos, vnic_id, port

44 mpshittype, ethertype, vlan, port, fcoe

45 mpshittype, ethertype, vnic_id, port, fcoe

46 mpshittype, protocol, tos, vlan, port, fcoe

47 mpshittype, protocol, tos, vnic_id, port, fcoe

48 mpshittype, vlan, vnic_id, port

 Changing default filter mode

Based on your requirement, you can change the default filter mode to any one of the combinations

mentioned in the table above. To do so, replace the default mode with the chosen mode in

firmware configuration file (t6-config.txt for T6 adapters; t5-config.txt for T5 adapters) located in

/lib/firmware/cxgb4/.

For example, if you want to filter traffic based on ethtype value in the packets for T6 adapters,

replace the default filterMode,

filterMode = fcoemask, srvrsram, fragmentation, mpshittype, protocol, vlan,

port, fcoe

with

filterMode = fragmentation, mpshittype, macmatch, ethertype, protocol, port

The network driver needs to be reloaded next using the following command:

[root@host~]# rmmod cxgb4

[root@host~]# modprobe cxgb4

Important Using any other filter mode combination is strictly not supported.

Classification and Filtering

Chelsio Unified Wire for Linux 262

2.2. Creating Filter Rules

Network driver (cxgb4) must be installed and loaded before setting the filter rule.

1. If you have not done already, run the Unified Wire Installer with the appropriate configuration

tuning option to install the network driver.

2. Load the network driver and bring up the Chelsio interface.

[root@host~]# modprobe cxgb4

[root@host~]# ifconfig ethX up

3. Now, create filter rules using cxgbtool.

[root@host~]#cxgbtool ethx filter <index> action [pass/drop/switch] <prio 1>

<hitcnts 1>

Where,

ethX : Chelsio interface
index : positive number set as filter id. 0-495 for T5 adapters; 0-559 for T6 adapters.

 Should be an even number while creating IPv6 filter.
action : Ingress packet disposition
pass : Ingress packets will be passed through set ingress queues
switch : Ingress packets will be routed to an output port with optional header rewrite.
drop : Ingress packets will be dropped.
prio 1 : Optional for T5.

 Mandatory for T6 indices 0-63; Should not be added for T6 indices 64-559
hitcnts 1 : To enable hit counts in cxgbtool filter show output.

 Examples

• drop action

[root@host~]# cxgbtool ethX filter 100 action drop fip 192.168.1.5

The above filter rule will drop all ingress packets from source IP 192.168.1.5. Remaining packets

will be sent to the host.

• pass action

[root@host~]# cxgbtool ethX filter 100 action pass lport 10001 fport 355

queue 2

The above filter rule will pass all ingress packets that match destination port 10001 and source

port 355 to ingress queue 2 for load balancing. Remaining packets will be sent to the host.

In case of multiple filter rules, the rule with the lowest filter index takes higher

priority.
Note

Classification and Filtering

Chelsio Unified Wire for Linux 263

• switch action

[root@host~]# cxgbtool ethX filter 100 action switch iport 0 eport 1 ivlan 3

The above filter rule will route all ingress packets that match VLAN id 3 from port 0 of Chelsio

adapter to port 1. Remaining packets will be sent to the host.

• prio option

To filter offloaded ingress packets, use the prio argument with the above command:

[root@host~]# cxgbtool ethx filter <index> action <pass/drop/switch> prio 1

Where index is a positive integer set as filter id. 0-495 for T5 adapters and 0-63 for T6 adapters.

2.3. Listing Filter Rules

To list the filters set, run the following command:

[root@host~]# cxgbtool ethX filter show

OR

[root@host~]# cat /sys/kernel/debug/cxgb4/<bus-id>/filters

2.4. Removing Filter Rules

To remove a filter, run the following command with the corresponding filter rule index:

[root@host~]# cxgbtool ethX filter <index> <delete|clear>

For more information on additional parameters, refer cxgbtool manual by running

the man cxgbtool command.

Note

For more information on additional parameters, refer cxgbtool manual by running

the man cxgbtool command
Note

Classification and Filtering

Chelsio Unified Wire for Linux 264

2.5. Layer 3 Example

Here’s an example on how to achieve L3 routing functionality:

• Follow these steps on Node 1
1. Configure IP address and enable the 3 interfaces.

[root@host~]# ifconfig eth0 102.1.1.1/24 up

[root@host~]# ifconfig eth0:2 102.1.1.2/24 up

[root@host~]# ifconfig eth0:3 102.1.1.3/24 up

2. Setup a static OR default route towards T6/T5 router to reach 102.1.2.0/24 network.

[root@host~]# route add -net 102.1.2.0/24 gw 102.1.1.250

• Follow these steps on Node 2

1. Configure IP address and enable the three interfaces.

[root@host~]# ifconfig eth0 102.1.2.1/24 up

[root@host~]# ifconfig eth0:2 102.1.2.2/24 up

[root@host~]# ifconfig eth0:3 102.1.2.3/24 up

2. Setup a static OR default route towards T6/T5 router to reach 102.1.1.0/24 network.

[root@host~]# route add -net 102.1.1.0/24 gw 102.1.2.250

T6/T5

Node 1 Node 2

eth0 eth1

102.1.2.250/24 102.1.1.250/24

102.1.2.1/24

102.1.2.2/24

102.1.2.3/24

102.1.1.1/24

102.1.1.2/24

102.1.1.3/24

eth0 eth0

Classification and Filtering

Chelsio Unified Wire for Linux 265

• Follow these steps on machine with T6/T5 adapter
1. Configure IP address and enable the 2 interfaces.

[root@host~]# ifconfig eth0 102.1.1.250/24 up

[root@host~]# ifconfig eth1 102.1.2.250/24 up

2. Create filter rule to send packets for 102.1.2.0/24 network out via eth1 interface.

[root@host~]# cxgbtool eth0 filter 100 lip 102.1.2.0/24 hitcnts 1 action

switch eport 1 smac 00:07:43:04:96:48 dmac 00:07:43:12:D4:88

Where, smac is the MAC address of eth1 interface on T6/T5 adapter machine and dmac is the

MAC address of eth0 interface on Node 2.

3. Create filter rule to send packets for 102.1.1.0/24 network out via eth0 interface.

[root@host~]# cxgbtool eth0 filter 101 lip 102.1.1.0/24 hitcnts 1 action

switch eport 0 smac 00:07:43:04:96:40 dmac 00:07:43:04:7D:50

Where, smac is the MAC address of eth0 interface on T6/T5 adapter machine and dmac is the

MAC address of eth0 interface on Node 1.

2.6. Layer 2 Example

Here is an example to achieve L2 switching functionality. The following will only work on kernel

3.10 and above.

T6/T5

Node 1 Node 2

eth0 eth1

promisc promisc

102.1.1.2/24 102.1.1.1/24

eth0 eth0

Classification and Filtering

Chelsio Unified Wire for Linux 266

• Follow these steps on Node 1
i. Configure IP address and enable the interface.

[root@host~]# ifconfig eth0 102.1.1.1/24 up

ii. Setup ARP entry to reach 102.1.1.2

[root@host~]# arp -s 102.1.1.2 00:07:43:12:D4:88

• Follow these steps on Node 2
i. Configure IP address and enable the interface.

[root@host~]# ifconfig eth0 102.1.1.2/24 up

ii. Setup ARP entry to reach 102.1.1.1

[root@host~]# arp -s 102.1.1.1 00:07:43:04:7D:50

• Follow these steps on machine with T6/T5 adapter
1. Update filterMode value with below combination in /lib/firmware/cxgb4/t6-config.txt to enable

matching based on macidx (use t5-config.txt for T5 adapters).

filterMode = fragmentation, macmatch, mpshittype, protocol, tos, port, fcoe

2. Unload and re-load the cxgb4 driver.

3. Enable promiscuous mode on both the interfaces on T6/T5 adapter machine.

[root@host~]# ifconfig eth0 up promisc

[root@host~]# ifconfig eth1 up promisc

4. Build and install latest iproute2 package.

5. Add fdb entry corresponding to Node-2 on T6/T5's eth0 interface.

[root@host~]# bridge fdb add 00:07:43:12:D4:88 dev eth0 self

6. Add fdb entry corresponding to Node-1 on T6/T5's eth1 interface.

[root@host~]# bridge fdb add 00:07:43:04:7D:50 dev eth1 self

Classification and Filtering

Chelsio Unified Wire for Linux 267

7. Both MAC entries should show up in MPS table. Run the following command to view the

table and note the index (idx field) of the entries:

[root@host~]# cat /sys/kernel/debug/cxgb4/0000\:01\:00.4/mps_tcam | more

8. Create a filter to match incoming packet's dst-mac 00:07:43:12:d4:88 with particular mac-idx

and switch it out via eport 1.

[root@host~]# cxgbtool eth0 filter 100 macidx 5 action switch eport 1

hitcnts 1

9. Create a filter to match incoming packet's dst-mac 00:07:43:04:7d:50 with particular mac-idx

and switch it out via eport 0.

[root@host~]# cxgbtool eth0 filter 101 macidx 7 action switch eport 0

hitcnts 1

2.7. Filtering VF traffic

To filter VF traffic, replace the default filterMode in the firmware configuration file (t6-config.txt for

T6 adapters; t5-config.txt for T5 adapters) located in /lib/firmware/cxgb4/ with any combination

containing vnic_id.

 filterMode = fragmentation, mpshittype, protocol, tos, vnic_id, port

The network driver needs to be reloaded next using the following command:

[root@host~]# rmmod cxgb4

[root@host~]# modprobe cxgb4

Instantiate the required VFs on the host and assign them to the Virtual Machines (VMs). Bring up

the VFs in the VMs and note the corresponding MAC addresses.

For information on VFs and instaniating them, refer to the Instantiate Virtual

Functions (SR-IOV) section of the Virtual Function Network (vNIC) chapter.

Note

Classification and Filtering

Chelsio Unified Wire for Linux 268

On the host, check the MPS TCAM entry for the VF MAC and note the corresponding VF ID.

[root@host~]# cat /sys/kernel/debug/cxgb4/<pci_bus_id>/mps_tcam | less

Apply filter rules on the Host using cxgbtool.

[root@host~]# cxgbtool ethX filter <index> vf <vf_id> action

[pass/drop/switch]

Example:

1. 4 VFs (VF0, VF1, VF2, Vf3) are instantiated on PF0.

[root@host~]# modprobe cxgb4

[root@host~]# echo 4 >

/sys/class/net/ethX/device/driver/<bus_id>/sriov_numvfs

2. 1 VM was brought up with VF2. cxgb4vf was loaded on the VM and the VF was brought

up.

[root@host~]# ifconfig enp8s2

enp8s2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

ether 06:44:3c:a8:40:02 txqueuelen 1000 (Ethernet)

3. Observe the VF id for the MAC address 06:44:3c:a8:40:02 in mps_tcam.

4. Apply the following filter rule on the host to drop all ingress packets to VF2 originating from

source IP 192.168.1.5. Remaining packets will be sent to the VF.

[root@host~]# cxgbtool ethX filter 101 vf 2 fip 192.168.1.5 action drop

Classification and Filtering

Chelsio Unified Wire for Linux 269

 Hash/DDR Filters

To create the large number of filters, select one of the below configuration tuning options during

Unified Wire installation:

• High Capacity Hash Filter: Allows you to create ~0.5 million filter rules. Can run non-offload

NIC traffic.

• Unified Wire (Default): Allows you to create ~18k filter rules. Can run all offload traffic.

You can create both LE-TCAM and Hash/DDR filters in the above configurations.

Hash filters are created based on filterMask tuples in firmware configuration file (t6-config.txt for

T6 adapters; t5-config.txt for t5 adapters) located in /lib/firmware/cxgb4/. filterMask tuples should

be either subset of or equal to filterMode tuples.

Hash filters are exact match filters. Hence, when you enable more fields (tuples) in filterMask, you

must create a filter rule with exactly same tuples as mentioned in filterMask.

3.1. Configuration

 Filter Modes

The Classification and Filtering feature is configured by specifying the filter modes in the firmware

configuration file located in /lib/firmware/cxgb4/

Adapter initialization will fail if filterMask contains a tuple which is not present in filterMode.

The following are the filter tuples supported with Hash Filters:

fcoe : Fibre Channel over Ethernet frames
port : Packet ingress physical port number
vnic_id : VF ID in MPS TCAM (Currently not supported) and outer VLAN ID
vlan : Inner VLAN ID
tos : Type of Service
protocol : IP protocol number (ICMP=1, TCP=6, UDP=17, etc)
ethertype : Layer 2 EtherType
macmatch : MAC index in MPS TCAM
mpshittype : MAC address "match type" (none,unicast,multicast,promiscuous,broadcast)

T5/T6 SO adapters do not support Hash Filters as they are memory free. Up to 496

LE-TCAM filters are supported with Hash Filter configurations.

Note

Classification and Filtering

Chelsio Unified Wire for Linux 270

 Supported Filter Combinations

The following table lists the supported FilterMode combinations.

Serial # Filter Combination

1 fragmentation, mpshittype, macmatch, ethertype, protocol, port

2 fragmentation, mpshittype, macmatch, ethertype, protocol, fcoe

3 fragmentation, mpshittype, macmatch, protocol, tos, port, fcoe

4 fragmentation, mpshittype, macmatch, protocol, vlan, fcoe

5 fragmentation, mpshittype, macmatch, protocol, vnic_id, fcoe

6 fragmentation, mpshittype, ethertype, protocol, tos, port, fcoe

7 fragmentation, mpshittype, protocol, tos, vlan, port

8 fragmentation, mpshittype, protocol, tos, vlan, fcoe

9 fragmentation, mpshittype, protocol, tos, vnic_id, port

10 fragmentation, mpshittype, protocol, tos, vnic_id, fcoe

11 fragmentation, mpshittype, protocol, vlan, port, fcoe

12 fragmentation, mpshittype, protocol, vnic_id, port, fcoe

13 fragmentation, macmatch, ethertype, protocol, port, fcoe

14 fragmentation, macmatch, protocol, vlan, port, fcoe

15 fragmentation, macmatch, protocol, vnic_id, port, fcoe

16 fragmentation, protocol, tos, vlan, port, fcoe

17 fragmentation, protocol, tos, vnic_id, port, fcoe

18 mpshittype, macmatch, ethertype, protocol, port, fcoe

19 mpshittype, macmatch, protocol, vlan, port

20 mpshittype, macmatch, protocol, vnic_id, port

21 mpshittype, protocol, tos, vlan, port, fcoe

22 mpshittype, protocol, tos, vnic_id, port, fcoe

 Changing default filter mode

Based on your requirement, you can change the default filter mode to any one of the combinations

mentioned above. Replace the default filterMode with the chosen mode in firmware configuration

file (t6-config.txt for T6 adapters; t5-config.txt for T5 adapters) located in /lib/firmware/cxgb4/.

For example, if you want to filter traffic based on ethtype value in the packets for T6 adapters,

replace the default filterMode with,

filterMode = fragmentation, mpshittype, macmatch, ethertype, protocol, port

The network driver needs to be reloaded next using the following command:

[root@host~]# rmmod cxgb4

[root@host~]# modprobe cxgb4 use_ddr_filters=1

Important Using any other filter mode combination is strictly not supported.

Classification and Filtering

Chelsio Unified Wire for Linux 271

3.2. Creating Filter Rules

Network driver (cxgb4) must be installed and loaded before setting the filter rule.

1. If you have not done already, run the Unified Wire Installer with the High Capacity Hash

Filter or Unified Wire (Default) configuration tuning option to install the drivers.

2. Load the network driver with DDR filters support and bring up the Chelsio interface.

[root@host~]# modprobe cxgb4 use_ddr_filters=1

[root@host~]# ifconfig ethX up

3. Now, create filter rules using cxgbtool.

[root@host~]# cxgbtool ethX filter <index> action [pass/drop/switch] fip

<source_ip> lip <destination_ip> fport <source_port> lport

<destination_port> proto <protocol> <hitcnts 1> <cap maskless>

Where,

ethX : Chelsio interface.
index : Filter index. For LE-TCAM filters, filter index should be 0-495 for T5

adapters and 0-559 for T6 adapters. For Hash/DDR filter, the index will be
ignored and replaced by an automatically computed value, based on the
hash (4-tuple). The index will be displayed after the filter rule is created
successfully.

action : Ingress packet disposition.
pass : Ingress packets will be passed through set ingress queues.
switch : Ingress packets will be routed to an output port with an optional header

rewrite.
drop : Ingress packets will be dropped.
source_ip/port : Source IP/port of incoming packet.
destination_ip/port : Destination IP/port of incoming packet.
protocol : TCP by default. To change, specify the corresponding internet protocol

number, e.g., use 17 for UDP.
hitcnts 1 : To enable hit counts in cxgbtool filter show output.
cap maskless : This is mandatory for hash filter. If not provided, LE-TCAM filter will be

created at the specified index.

 Choosing filterMode and filterMask

As mentioned earlier filterMask tuples can be subset of or equal to filterMode tuples. Following

are examples of how you can select filterMode and filterMask and create a Hash filter based on

those values:

In case of Hash/DDR filters, source_ip, destination_ip, source_port and

destination_port are mandatory, since the filters don't support masks and hence,

4-tuple must always be supplied. Proto is also a mandatory parameter.

Note

Classification and Filtering

Chelsio Unified Wire for Linux 272

• When all tuples from filterMode are enabled in filterMask

1. Select a filterMode from the supported filterMode table based on your requirement.

filterMode = fragmentation, mpshittype, protocol, vlan, port, fcoe

2. Select a filterMask so that it is a subset of or equal to filterMode based on application.

filterMask = fragmentation, mpshittype, protocol, vlan, port, fcoe

It is mandatory to create a filter based on all the above tuples mentioned in filterMask. Otherwise,

filter rule will not honour.

3. Now, to create a hash filter based on the filterMode and filterMask values selected above:

[root@host~]# cxgbtool eth18 filter 100 action drop lip 120.10.10.100 fip

120.10.10.200 lport 5001 fport 51549 proto 6 frag 0 matchtype 0 ivlan 10

iport 0 fcoe 0 hitcnts 1 cap maskless

Hash-Filter Index = 303760

• When all tuples from filterMode are not enabled in filterMask

In case you don’t want to create filter rule based on any particular tuple from filterMode, don’t

select it in filterMask. For example, if you don’t want to create a filter based on VLAN value, then

don’t select it from filterMode to filterMask.

1. Select a filterMode from the supported filterMode table based on your requirement.

filterMode = fragmentation, mpshittype, protocol, vlan, port, fcoe

2. Select a filterMask so that it is a subset of or equal to filterMode based on application

without VLAN tuple.

filterMask = fragmentation, mpshittype, protocol, port, fcoe

Here, we have selected fragmentation, mpshittype, protocol, port, fcoe in filterMask so it is

mandatory to create a filter based on only those tuples mentioned in filterMask. Otherwise, filter

rule will not honour.

3. Now, to create a hash filter based on the filterMode and filterMask values selected above:

[root@indus sw]# cxgbtool eth18 filter 100 action drop lip 120.10.10.100

fip 120.10.10.200 lport 5001 fport 51549 proto 6 frag 0 matchtype 0 iport

0 fcoe 0 hitcnts 1 cap maskless

Hash-Filter Index = 196568

Classification and Filtering

Chelsio Unified Wire for Linux 273

 Examples

• drop action

[root@host~]# cxgbtool ethX filter 496 action drop lip 102.1.1.1 fip

102.1.1.2 lport 12865 fport 20000 hitcnts 1 cap maskless iport 1 proto 17

Hash-Filter Index = 61722

The above filter rule will drop all UDP packets matching above 4 tuple coming on Chelsio port 1.

Remaining packets will be sent to the host.

• pass action

[root@host~]# cxgbtool ethX filter 496 action pass lip 102.2.2.1 fip

102.2.2.2 lport 12865 fport 12000 hitcnts 1 cap maskless proto 6

Hash-Filter Index = 308184

The above filter rule will pass all TCP packets matching above 4 tuple. Remaining packets will be

sent to the host.

• switch action

[root@host~]# cxgbtool ethX filter 496 action switch lip 102.3.3.1 fip

102.3.3.2 lport 5001 fport 16000 proto 6 iport 0 eport 1 hitcnts 1 cap

maskless

Hash-Filter Index = 489090

The above filter rule will switch all TCP packets matching above 4 tuple from Chelsio port 0 to

Chelsio port 1. Remaining packets will be sent to the host.

3.3. Listing Filter Rules

• To list the Hash/DDR filters set, run the following command:

[root@host~]# cat /sys/kernel/debug/cxgb4/<bus-id>/hash_filters

• To list the both LE-TCAM and Hash/DDR filters set, run the following command:

[root@host~]# cxgbtool ethX filter show

For more information on additional parameters, refer cxgbtool manual by running

the man cxgbtool command.
Note

Classification and Filtering

Chelsio Unified Wire for Linux 274

3.4. Removing Filter Rules

To remove a filter, run the following command with cap maskless parameter and corresponding

filter rule index:

[root@host~]# cxgbtool ethX filter <index> <delete|clear> cap maskless

3.5. Filter Priority

By default, Hash/DDR filter has priority over LE-TCAM filter. To override this, the LE-TCAM filter

should be created with prio option. For example:

[root@host~]# cxgbtool ethx filter <index> action <pass/drop/switch> prio 1

Where index is a positive integer set as filter id. 0-495 for T5 adapters and 0-63 for T6 adapters.

3.6. Swap MAC Feature

Chelsio’s T6/T5 Swap MAC feature swaps packet source MAC and destination MAC addresses.

This is applicable only for switch filter rules. The followingis an example:

[root@host~]# cxgbtool eth2 filter 100 action switch lip 102.2.2.1 fip

102.2.2.2 lport 5001 fport 14000 hitcnts 1 iport 1 eport 0 swapmac 1 proto

17 cap maskless

Hash-Filter Index = 21936

The above example will swap source and destination MAC addresses of UDP packets

(matching above 4 tuple) received on adapter port 1 and then switch them to port 0.

3.7. Traffic Mirroring

On T5/T6 adapters, when using Hash Filter configuration tuning options, Network driver (cxgb4)

parameter enable_mirror can be used to enable mirroring of traffic running on physical ports. The

mirrored traffic will be received via Mirror PF/VF on Mirror Receive queues, which will then inject

this traffic into network stack of Linux kernel.

• Filter rule index can be determined by referring the “hash_filters” file located in

/sys/kernel/debug/cxgb4/<bus-id>/.

• For more information on additional parameters, refer cxgbtool manual by runing

the man cxgbtool command.

Note

Classification and Filtering

Chelsio Unified Wire for Linux 275

 Enabling Mirroring

To enable traffic mirroring, follow the steps mentioned below:

1. If not done already, install Unified Wire with High Capacity Hash Filter or Unified Wire

(Default) configuration tuning option as mentioned in the Unified Wire chapter.

2. Enable vnic_id match for filterMode in Hash filter config file, t5-config.txt, located in

/lib/firmware/cxgb4/

filterMode = fragmentation, mpshittype, protocol, vnic_id, port, fcoe

filterMask = port, protocol, vnic_id

3. Unload network driver (cxgb4) and reload it with mirroring enabled.

[root@host~]# rmmod cxgb4

[root@host~]# modprobe cxgb4 enable_mirror=1 use_ddr_filters=1

4. The traffic will now be mirrored and received via mirror PF/VF corresponding to each port.

 Switch Filter with Mirroring

The following example explains the method to switch and mirror traffic simultaneously:

1. Obtain the PF and VF values of the incoming port from /sys/kernel/debug/cxgb4/<bus-

id>/mps_tcam

2. Create the desired switch filter rule.

[root@host~]# cxgbtool ethX filter 100 fip 102.8.8.2 lip 102.8.8.1 fport

20000 lport 12865 proto 6 pf 4 vf 64 action switch iport 0 eport 1 cap

maskless

The hash filter rule switches TCP traffic matching the above 4-tuple received on port 0 to port 1.

The traffic will be switched and simultaneously received on mirror queues and network stack of

host as mirroring is enabled.

 Filtered Traffic Mirroring

Once mirroring is enabled, all the traffic received on a physical port will be duplicated. The

following example explains the method to filter out the redundant traffic and receive only specific

traffic on mirror queues:

1. Obtain the mirror PF and VF values from dmesg. You should see a similar output:

Classification and Filtering

Chelsio Unified Wire for Linux 276

2. Create a DROP-ALL rule as below:

[root@host~]# cxgbtool ethX filter 255 pf 4 vf 66 action drop

Where, 255 is the last index of available TCAM filters. This will create a catch-all DROP filter for

Mirror PF/VF of port 0. Similarly, create DROP filters for rest of Mirror PF/VF.

3. Create specific filter rules to allow specific traffic to be received on mirror queues as below:

[root@host~]# cxgbtool ethX filter 101 lip 102.8.8.1 fip 102.8.8.2 lport

12865 fport 20000 pf 4 vf 66 action pass

Now, the above specific traffic (from 102.8.8.2,20000 to 102.8.8.1,12865) will be received in

mirror receive queues and network stack of host.

3.8. Packet Tracing and Hit Counters

For T5/T6 LE-TCAM and T6 Hash/DDR filters, hit counters will work simply by adding hitcnts 1

parameter to the filter rule. However, for T5 Hash/DDR filters, you will have to make use of tracing

feature and RSS queues. The following is a step-by-step guide to enable packet tracing and hit

counters for T5 Hash/DDR filter rules:

1. Load network driver with the following parameters:

[root@host~]# modprobe cxgb4 use_ddr_filters=1 enable_traceq=1

2. Configure the required filter rules.

3. Enable tracing on T5 adapter.

[root@host~]# cxgbtool ethX reg 0x09800=0x13

4. Set up a trace filter.

[root@host~]# echo tx1 snaplen=40 > /sys/kernel/debug/cxgb4/<bus_id>/trace0

Here, snaplen is the length in bytes to be captured.

The above step will trace all the packets transmitting from port1(tx1) to trace filter 0.

Use “snaplen=60” in case of IPV6. Note

Classification and Filtering

Chelsio Unified Wire for Linux 277

5. Configure RSS Queue to send trace packets. Determine the RspQ ID of the queues by

looking at Trace QType in /sys/kernel/debug/cxgb4/<bus-id>/sge_qinfo file.

[root@host~]# cxgbtool ethX reg 0x0a00c=<Trace Queue0-RspQ ID>

Now the traced packets can be seen in tcpdump, and the hit counters will also increment.

• Multi-tracing

To enable packet capture or hit counters for multiple chelsio ports in Tx/Rx direction enable

Multi-tracing. Using this we can configure 4 different RSS Queues separately corresponding to

4 trace-filters.

1. Enable Tracing as well as MultiRSSFilter.

[root@host~]# cxgbtool ethX reg 0x09800=0x33

2. Setup a trace filter.

[root@host~]# echo tx0 snaplen=40 > /sys/kernel/debug/cxgb4/<bus_id>/trace0

3. Configure the RSS Queue corresponding to trace0 filter configured above. Determine the

RspQ ID of the queues by looking at Trace QType in /sys/kernel/debug/cxgb4/<bus-

id>/sge_qinfo file.

[root@host~]# cxgbtool ethX reg 0x09808=<Trace-Queue0-RspQ ID>

4. Similarly for other direction and for multiple ports run the follow commands:

[root@host~]# echo rx0 snaplen=40 > /sys/kernel/debug/cxgb4/<bus_id>/trace1

[root@host~]# echo tx1 snaplen=40 > /sys/kernel/debug/cxgb4/<bus_id>/trace2

[root@host~]# echo rx1 snaplen=40 > /sys/kernel/debug/cxgb4/<bus_id>/trace3

[root@host~]# cxgbtool ethX reg 0x09ff4=<Trace-Queue1-RspQ ID>

[root@host~]# cxgbtool ethX reg 0x09ffc=<Trace-Queue2-RspQ ID>

[root@host~]# cxgbtool ethX reg 0x0a004=<Trace-Queue3-RspQ ID>

Use “snaplen=60” in case of IPV6. Note

Classification and Filtering

Chelsio Unified Wire for Linux 278

 NAT Filtering

T5/T6 adapters support offloading of stateless/static NAT functionality, that is translating source/

destination L3 IP addresses, and source/destination L4 port numbers. This feature is supported

with both LE-TCAM and Hash filters.

 Syntax:

[root@host~]# cxgbtool ethX filter <index> action switch fip <source_ip> lip

<destination_ip> fport <source_port> lport <destination_port> nat <mode>

nat_fip <new_source_ip> nat_lip <new_destination_ip> nat_fport

<new_source_port> nat_lport <new_destination_port>

Where,

ethX : Chelsio interface.
source_ip/port : Source IP/port of incoming packet.
destination_ip/port : Destination IP/port of incoming packet.
new_source_ip/port : Source IP/port to be translated to.
new_destination_ip/port : Destination IP/port to be translated to.
Mode : Combination of IP/port to be translated. all will

 translate all 4-tuple fields. To see other modes, refer
 cxgbtool manual page.

Examples:

• Hash filter to translate all four tuples, viz. source IP, destination IP, source port and destination

port to new values.

• Hash filter to translate source IP and source port to new values.

• LE-TCAM filter to translate destination IP and destination port to new values.

This feature is only supported with filter action switch. Note

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 279

XXIII. OVS Kernel Datapath Offload

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 280

 Introduction

Open vSwitch is a production quality, multilayer virtual switch licensed under the open source

Apache 2.0 license. It is designed to enable massive network automation through programmatic

extension, while still supporting standard management interfaces and protocols.

Chelsio’s T6/T5 Unified Wire solution can offload OVS datapath flow match entries and action

processing onto Chelsio adapter for hardware acceleration of OVS datapath flow processing.

Chelsio 1/10/25/40/50/100Gb Ethernet controllers and adapters are capable of offloading

OpenFlow and non-OpenFlow network traffic simultaneously, including tunnel handling (e.g.,

VXLAN / IPsec), NAT, IP stack (ARP, route lookup, frag tracking, fragment / defragment) and

other kernel functionalities. A high performance, scalable network I/O is delivered by leveraging

built in eSwitch and traffic manager capabilities. In addition, features like traffic classifier, load

balancer and firewall are supported at port level by all Chelsio adapters.

1.1. Hardware Requirements

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3*

 T6225-SO-CR*

 T580-CR

 T580-LP-CR

 T580-SO-CR*

 T580-OCP-SO*

 T540-CR

 T540-LP-CR

 T540-SO-CR*

 T540-BT

 T520-CR

 T520-LL-CR

 T520-SO-CR*

 T520-OCP-SO*

 T520-BT

* Hash Filter (exact-match) flows not supported

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 281

1.2. Software Requirements

Currently, the OVS Kernel Datapath Offload driver is available for the following kernel versions:

 RHEL 7.9, 3.10.0-1160.el7.x86_64

Other kernel versions have not been tested and are not guaranteed to work.

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 282

 Software/Driver Installation

2.1. Pre-requisites

GCC 4.6+, Python 2.7+, Python-six, Autoconf 2.63+, Automake 1.10+, libtool 2.4+ packages

should be installed. For the complete list of software required, visit

http://docs.openvswitch.org/en/latest/intro/install/general/

2.2. Installation

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install OVS driver.

[root@host~]# make ovs_install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

http://docs.openvswitch.org/en/latest/intro/install/general/

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 283

 Software/Driver Configuration and Fine Tuning

Supported Fields

The following match fields are supported for offload:

• Input Port

• L2 Ethernet Type

• L3 IP Protocol Type

• L3 IPv4 address

• L3 IPv6 address

• L3 IPv4 TOS

• L3 IP Fragmentation

• L4 Ports (tcp/udp src-port, dst-port)

• Tunnel/Encapsulation VNI (only on T6)

Supported Actions

The following actions are supported for offload:

• Drop

• Switch (output to a port)

• L2 Rewrite: src-mac, dst-mac

• VLAN Rewrite: push, pop, modify

• L3 Rewrite: ip-src, ip-dst (IPv4 and IPv6)

• L4 Rewrite: src-port, dst-port (TCP/UDP)

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 284

3.1. Configuring OVS Machine

The following example explains the method to configure an OVS machine:

1. Ensure that Unified Wire is installed with High Capacity Hash Filter configuration tuning

option.

2. Update the filterMode and filterMask in the config file in /lib/firmware/cxgb4/. Select a Filter

Mode combination with fragmentation, ethertype, protocol and port from the supported list.

Use t6-config.txt for T6 adapters and t5-config.txt for T5 adapters.

filterMode = fragmentation, mpshittype, ethertype, protocol, tos, port, fcoe

filterMask = fragmentation, ethertype, protocol, port

3. Load NIC (cxgb4) driver with hash-filter support.

[root@host~]# modprobe cxgb4 use_ddr_filters=1

4. Bring up the Chelsio interfaces in promiscuous mode.

[root@host~]# ifconfig eth2 promisc up

[root@host~]# ifconfig eth3 promisc up

5. Load Open vSwitch module.

[root@host~]# modprobe openvswitch

Host A Host B

OVS Switch

eth2 eth3

*eth2 and eth3 are Chelsio interfaces.

Note FilterMask tuples can be subset of or equal to filterMode tuples.

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 285

6. Configure OVS.

[root@host~]# ovs-appctl exit

[root@host~]# pkill -9 ovs

[root@host~]# rm -rf /usr/local/etc/ovs-vswitchd.conf

[root@host~]# rm -rf /usr/local/var/run/openvswitch/db.sock

[root@host~]# rm -rf /usr/local/etc/openvswitch/conf.db

[root@host~]# touch /usr/local/etc/ovs-vswitchd.conf

[root@host~]# ovsdb-tool create /usr/local/etc/openvswitch/conf.db

<uwire_package>/src/openvswitch-x.x.x/vswitchd/vswitch.ovsschema

[root@host~]# ovsdb-server /usr/local/etc/openvswitch/conf.db --

remote=punix:/usr/local/var/run/openvswitch/db.sock --

remote=db:Open_vSwitch,Open_vSwitch,manager_options --bootstrap-ca-

cert=db:Open_vSwitch,SSL,ca_cert --pidfile --detach --log-file

[root@host~]# ovs-vsctl --no-wait init

[root@host~]# export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

[root@host~]# ovs-vswitchd --pidfile --detach

7. Create an OVS bridge and add Chelsio interfaces to it.

[root@host~]# ovs-vsctl add-br br0

[root@host~]# sleep 2

[root@host~]# ifconfig br0 up

[root@host~]# ovs-vsctl add-port br0 eth2

[root@host~]# sleep 5

[root@host~]# ovs-vsctl add-port br0 eth3

[root@host~]# sleep 5

[root@host~]# ovs-vsctl show

8. Now ping from Host A to Host B to verify that OVS is configured successfully.

9. Stop the ping traffic and delete all the flows on switch.

[root@host~]# ovs-ofctl del-flows br0

Ports on OVS bridge must be added in the same order as the adapter, since there's

no mapping between OVS and physical ports.
Note

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 286

3.2. Creating OVS flows

It is mandatory to specify L2 Ethernet Type (dl_type) to offload OVS flows. There are two types

of flows:

• exact-match: Protocol and 4-tuple are mandatory to create an exact-match flow. ~0.5 million

exact-match flows can be offloaded.

• wild-card: If any of 4-tuple and protocol are absent, wild-card flow is created. 496 wild-card

flows can be offloaded.

 Examples

3.2.1.1. Generic Flows

Below are few examples OVS Flows with the following filterMode and filterMask combination:

filterMode = fragmentation, mpshittype, ethertype, protocol, tos, port, fcoe

filterMask = fragmentation, ethertype, protocol, port

• Wild-card flow to drop incoming packets on first port.

[root@host~]# ovs-ofctl add-flow br0 in_port=1,dl_type=0x800,action=drop

• Wild-card flow to switch ARP packets (L2 EtherType=0x0806) on 1st port to 2nd port.

[root@host~]# ovs-ofctl add-flow br0

in_port=1,dl_type=0x0806,action=output:2

• Wild-card flow to switch TCP packets (L3 proto=6) on 1st port to 2nd port by rewriting source

and destination MAC addresses.

[root@host~]# ovs-ofctl add-flow br0 in_port=1,dl_type=0x800,

nw_proto=6,action=mod_dl_src:00:07:43:28:E4:50,

mod_dl_dst:00:07:43:44:64:50,output:2

• Exact-match flow to drop matching 4-tuple traffic.

[root@host~]# ovs-ofctl add-flow br0

in_port=1,dl_type=0x800,nw_proto=6,nw_src=10.1.1.66,tp_src=11000,nw_dst=10.1

.1.58,tp_dst=11000,action=drop

T5/T6 SO adapters do not support exact-match flows. Up to 494 wild-card flows are

supported.

Note

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 287

• Exact-match flow to match 4-tuple IPv4 traffic and do NAT rewrite.

[root@host~]# ovs-ofctl add-flow br0

dl_type=0x800,nw_proto=6,nw_src=10.1.1.66,tp_src=11000,nw_dst=10.1.1.58,tp_d

st=21000,action=mod_nw_src=10.2.2.66,mod_tp_src=11005,mod_nw_dst:10.2.2.62,m

od_tp_dst:12345,output:2

• Exact-match flow to match 4-tuple IPv6 traffic and do NAT rewrite.

[root@host~]# ovs-ofctl add-flow br0

in_port=1,dl_type=0x86dd,nw_proto=6,ipv6_src=2000::66,tp_src=11000,ipv6_dst=

2000::58,tp_dst=11000,action=set_field:2001::66-

\>ipv6_src,mod_tp_src=15000,output:2

• Wild-card flow to drop fragmented packets.

[root@host~]# ovs-ofctl add-flow br0 dl_type=0x800,ip_frag=yes,action=drop

• If a wild-card and exact match flow both exist for the same traffic pattern, the flow that is

created first will take priority. In the below example, the wild-card flow will take priority as

it was created first.

[root@host~]# ovs-ofctl add-flow br0

dl_type=0x800,nw_src=10.1.1.58,nw_dst=10.1.1.66,tp_src=15000,tp_dst=15000,ac

tion=output:1

[root@host~]# ovs-ofctl add-flow br0

dl_type=0x800,nw_proto=6,nw_src=10.1.1.58,nw_dst=10.1.1.66,tp_src=15000,tp_d

st=15000,action=output:1

3.2.1.2. VLAN Flows

Below are few example VLAN flows with the following FilterMode and FiletrMask combination.

filterMode = fragmentation,mpshittype,ethertype,vlan,port

filterMask = ethertype,vlan,port

Reload cxgb4 driver after updating filterMode and filterMask.

Only wild-card flows are currently supported with VLAN matches. Note

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 288

• Strip VLAN tag and switch traffic.

[root@host~]# ovs-ofctl add-flow br0

in_port=1,dl_type=0x800,action=strip_vlan,output:2

• Insert VLAN tag 100 and switch traffic.

[root@host~]# ovs-ofctl -O OpenFlow11 add-flow br0

in_port=1,dl_type=0x800,action=push_vlan:0x8100,set_field:100-

\>vlan_vid,output:2

• Modify VLAN tag 30 to 50 and switch traffic.

[root@host~]# ovs-ofctl -O OpenFlow11 add-flow br0

in_port=1,dl_type=0x800,vlan_vid=30,action=mod_vlan_vid=50,output:2

If vlan_vid is not specified, the mod_vlan_vid tag will be added with a priority of 0.

• Modify VLAN priority and switch traffic.

[root@host~]# ovs-ofctl -O OpenFlow11 add-flow br0

in_port=1,dl_type=0x800,vlan_pcp=4,action=mod_vlan_pcp=3,output:2

3.2.1.3. VXLAN Flows

The following steps describe the method to configure VXLAN using OVS with single port

connected on Server and Client machines.

Server

1. Update the firmware configuration file, t6-config.txt, located at /lib/firmware/cxgb4/

filterMode = fragmentation, mpshittype, ethertype, vnic_id, port

filterMask = ethertype, vnic_id, port

vnicMode = encapsulation

2. Load NIC (cxgb4) driver with hash-filter support.

[root@host~]# modprobe cxgb4 use_ddr_filters=1

• Only wild-card flows are currently supported with VXLAN matches.

• VxLAN VNI rewrite is not supported.

• Supported only on kernels above 4.9

Note

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 289

3. Bring up Chelsio interfaces in promiscous mode.

[root@host~]# ifconfig ethX <chelsio_port0_ip_address> promisc up

[root@host~]# ifconfig ethY promisc up

4. Load Open vSwitch module.

[root@host~]# modprobe openvswitch

5. Configure OVS.

[root@host~]# ovs-appctl exit

[root@host~]# pkill -9 ovs

[root@host~]# rm -rf /usr/local/etc/ovs-vswitchd.conf

[root@host~]# rm -rf /usr/local/var/run/openvswitch/db.sock

[root@host~]# rm -rf /usr/local/etc/openvswitch/conf.db

[root@host~]# touch /usr/local/etc/ovs-vswitchd.conf

[root@host~]# ovsdb-tool create /usr/local/etc/openvswitch/conf.db

<uwire_package>/src/openvswitch-x.x.x/vswitchd/vswitch.ovsschema

[root@host~]# ovsdb-server /usr/local/etc/openvswitch/conf.db --

remote=punix:/usr/local/var/run/openvswitch/db.sock --

remote=db:Open_vSwitch,Open_vSwitch,manager_options --bootstrap-ca-

cert=db:Open_vSwitch,SSL,ca_cert --pidfile --detach --log-file

[root@host~]# ovs-vsctl --no-wait init

[root@host~]# export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

[root@host~]# ovs-vswitchd --pidfile –detach

[root@host~]# ovs-vsctl add-br br0

[root@host~]# ifconfig br0 <server_ip>/24 up

[root@host~]# ovs-vsctl add-port br0 <chelsio_port0_name> -- set interface

<chelsio_port0_name> type=vxlan options:remote_ip=<peer_chelsio_port0_ip>

options:local_ip=<local_chelsio_port0_ip> options:key=flow

6. Disable GRO on the chelsio adapter, bridge and VXLAN interfaces.

[root@host~]# ethtool -K <chelsio_port0_name> gro off

[root@host~]# ethtool -K <chelsio_port1_name> gro off

[root@host~]# ethtool -K br0 gro off

[root@host~]# ethtool -K vxlan_sys_* gro off

7. Set a rule to match packets with VNI=42 and drop.

[root@host~]# ovs-ofctl add-flow br0 in_port=1,tun_id=0x2a,action=drop

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 290

Client

1. Follow steps 1-6 described in the previous section Server.

2. Set a rule to set VNI to 42 and send traffic.

[root@host~]# ovs-ofctl add-flow br0

in_port=LOCAL,action=set_tunnel:0x2a,output:1

3.3. Verifying OVS Flow Dump

OVS flow dump can be verified using:

[root@host~]# ovs-ofctl dump-flows br0

Run traffic between hosts which matches the flow and verify if the n_packet counter is

incrementing.

To check if the OVF Flows were offloaded, run the below command:

[root@host~]# cxgbtool ethX filter show

Wild-card flows will be shown as LE-TCAM Filters and Exact-match flows will be shown as Hash

Filters. Hits and Hit-Bytes will increment for the corresponding filters.

3.4. Setting up ODL with OVS

The following example explains the method to set up OpenDaylight (ODL) using OVS:

On the ODL controller setup,

1. Download the latest Java Development Kit.

2. Extract the tar file.

3. Create an entry in .bashrc which points to the extracted folder.

export JAVA_HOME=<path>/jdk1.8.0_92

export PATH=$PATH:$JAVA_HOME

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 291

4. Log out and log in again.

5. Download ODL controller pre-built zip package.

6. Unzip the package and change your working directory to opendaylight.

7. Run the script run.sh and wait for ~3 minutes for the controller to be setup.

8. Open a web browser and enter the address http://localhost:8080

9. Login with admin keyword for both username and password.

10. On the OVS machine, add the bridge to the controller and disable in-band.

[root@host ~]# ovs-vsctl set-controller br0 tcp:<ODL Controller IP>:6633

[root@host ~]# ovs-vsctl set bridge br0 other-config:disable-in-band=true

11. Refresh the webpage on the ODL controller and you should see the OVS details.

12. Go to Flows tab, add and install a flow.

13. Verify the flow dump on the OVS machine.

[root@host ~]# ovs-ofctl dump-flows br0

Run traffic between hosts which matches the flow and verify if the n_packet counter is

incrementing.

Host A Host B

OVS Switch

eth2 eth3

*eth2 and eth3 are Chelsio interfaces.

ODL

Controller

OVS Kernel Datapath Offload

Chelsio Unified Wire for Linux 292

 Software/Driver Uninstallation

1. Change your working directory to the Chelsio Unified Wire directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Uninstall OVS driver.

[root@host~]# make ovs_uninstall

Mesh Topology

Chelsio Unified Wire for Linux 293

XXIV. Mesh Topology

Mesh Topology

Chelsio Unified Wire for Linux 294

 Introduction

Chelsio’s fifth/sixth generation (T5/T6), high-performance 10/25/40/50/100GbE adapters enable

incremental, non-disruptive server installs, and support the ability to work without requiring any

discrete external network switch, delivering a brownfield strategy to enable high performance, low

cost, scalable deployments. Major benefits include cost savings on switches at higher speeds

with each deployment. Mesh topology involves connecting each node to every other node.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3 ^

 T6225-SO-CR ^

 T580-OCP-SO*

 T580-CR

 T580-LP-CR

 T580-SO-CR*

 T540-CR

 T540-LP-CR

 T540-SO-CR

 T520-CR

 T520-LL-CR

 T520-SO-CR*

 T520-OCP-SO*

 T520-BT

 T540-BT

* Only NIC driver supported.

^ Memory-free; 256 IPv4/128 IPv6 offload connections supported.

Mesh Topology

Chelsio Unified Wire for Linux 295

1.2. Software Requirements

Currently, the Mesh topology is available for the following Linux kernel version(s):

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other versions have not been tested and are not guaranteed to work.

1.3. Mesh topology

Each node should be connected to other node. Supported configs using this approach: N ports

per node, N+1 node cluster. Below is a 5-node Mesh using 4-port Chelsio adapters. NIC ports on

each server connected to each other (1<->2, 1<->3, 1<->4, 1<->5, 2<->3, 2<->4, 2<->5, 3<->4,

3<->5, 4<->5).

P1

(X1 node) T540-CR
P0 P1 P2 P3

P0 P1 P2 P3
(X3 node) T540-CR

P0 P1 P2 P3
(X4 node) T540-CR

 P0
 P1
 P2
 P3
(X2 node)
T540-CR

P0
P1
P2
P3
(X5 node)
T540-CR

Mesh Topology

Chelsio Unified Wire for Linux 296

 Software/Driver Installation

 Install Unified Wire on all the machines in the mesh topology.

1. Change your current working directory to the Chelsio Unified Wire package directory.

[root@host~]# cd ChelsioUwire-x.x.x.x

2. Install the drivers, tools, and libraries.

[root@host~]# make install

3. Reboot your machine for changes to take effect.

[root@host~]# reboot

For more installation options, run make help or install.py -h. Note

Mesh Topology

Chelsio Unified Wire for Linux 297

 Software/Driver Configuration and Fine-tuning

Configure all the machines in the mesh topology using the below steps:

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

1. Load network driver (cxgb4).

[root@host~]# modprobe cxgb4

2. Configure interfaces with required IPs and networking as mentioned in

https://access.redhat.com/solutions/30564 article.

You should be able to run traffic between the nodes. To run different protocol traffic, refer to

their respective sections for protocol configuration.

Example:

Three nodes are connected to each other in mesh topology with the following IP addresses.

If node3 wants to communicate to node1,

[root@host~]# ping -I 102.1.3.3 102.1.1.3

If node3 wants to communicate to node2,

 [root@host~]# ping -I 102.1.3.4 102.1.2.3

Node 3

Node 1 Node 2

eth0 eth1

102.1.3.4/16 102.1.3.3/16

102.1.2.3/16

102.1.1.3/16

eth0 eth0

eth1 eth1

102.1.1.4/16

102.1.2.4/16

Important Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.

https://access.redhat.com/solutions/30564

Traffic Management

Chelsio Unified Wire for Linux 298

XXV. Traffic Management

Traffic Management

Chelsio Unified Wire for Linux 299

 Introduction

Traffic Management capabilities built-in to Chelsio adapters can shape transmit data traffic

through the use of sophisticated queuing and scheduling algorithms built-in to the ASIC hardware

which provides fine-grained software control over latency and bandwidth parameters such as

packet rate and byte rate. These features can be used in a variety of data center application

environments to solve traffic management problems.

Traffic Management features in the Chelsio‘s adapters allow the user to control three main things:

• Guarantee low latency in the presence of other traffic

• Control max bandwidth that a connection or a flow (a group of connections) can use

• Allocate available bandwidth to several connection or flows based on desired levels of

performance

Once the offload transmit traffic shaping classes have been configured, individual offloaded

connections (flows) may be assigned to a traffic shaping class to manage the flows as per the

class configuration. The mechanism to accomplish this "flow to class" mapping assignment is the

Connection Offload Policy (COP) configuration system.

1.1. Hardware Requirements

 Supported Adapters

The following are the supported Chelsio adapters:

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-LL-CR

 T6225-OCP3

 T6225-SO-OCP3*

 T6225-SO-CR*

 T580-CR

 T580-LP-CR

 T580-SO-CR*

 T580-OCP-SO*

 T540-CR

 T540-LP-CR

 T540-SO-CR*

 T540-BT

 T520-CR

Traffic Management

Chelsio Unified Wire for Linux 300

 T520-LL-CR

 T520-SO-CR*

 T520-OCP-SO*

 T520-BT

* Only NIC driver supported.

1.2. Software Requirements

 Linux Requirements

Currently, the Traffic Management feature is available for the following kernel versions:

 RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3.x86_64

 RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2.x86_64

 RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9.x86_64

 RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8.x86_64

 RHEL 7.9, 3.10.0-1160.el7.x86_64

 RHEL 7.6, 3.10.0-957.el7.ppc64le (POWER8 LE)

 RHEL 7.6, 4.14.0-115.el7a.aarch64 (ARM64)

 RHEL 7.5, 3.10.0-862.el7.ppc64le (POWER8 LE)

 RHEL 7.5, 4.14.0-49.el7a.aarch64 (ARM64)

 SLES 15 SP4, 5.14.21-150400.22-default

 Ubuntu 22.04.5, 5.15.0-125-generic

 Ubuntu 20.04.6, 5.4.0-146-generic

 Debian 12.7, 6.1.0-25-amd64

 Kernel.org linux-6.6.60

 Kernel.org linux-6.1.116

Other kernel versions have not been tested and are not guaranteed to work.

Traffic Management

Chelsio Unified Wire for Linux 301

 Software/Driver Loading

[root@host~]# rmmod csiostor cxgb4i cxgbit iw_cxgb4 chcr cxgb4vf cxgb4

libcxgbi libcxgb

Traffic Management can be performed on non-offloaded connections as well as on offloaded

connections.

The drivers must be loaded by the root user. Any attempt to load the drivers as a regular user will

fail.

 Run the following commands to load the TOE driver:

[root@host~]# modprobe cxgb4

[root@host~]# modprobe t4_tom

Ensure that all inbox drivers are unloaded before proceeding with unified wire

drivers.
Important

Traffic Management

Chelsio Unified Wire for Linux 302

 Software/Driver Configuration and Fine-tuning

3.1. Traffic Management Rules

Traffic Management supports the following types of scheduler hierarchy levels which can be

configured using the cxgbtool utility:

i. Class Rate Limiting

ii. Class Weighted Round Robin

iii. Channel Rate Limiting

 Class Rate Limiting

This scheduler hierarchy level can be used to rate limit individual traffic classes or individual

connections (flow) in a traffic class. Configure it using the below command.

[root@host~]# cxgbtool <ethX> sched-class params type packet level cl-rl

mode <scheduler-mode> rate-unit <scheduler-rate-unit> rate-mode <scheduler-

rate-mode> channel <Channel No.> class <scheduler-class-index> max-rate

<maximum-rate> pkt-size <Packet size>

Here,

ethX : Chelsio interface
scheduler-mode : specifies whether the rule is configured for individual traffic

classes or individual connections (flow) in a traffic class. Possible
values include flow or class.

scheduler-rate-unit : Specifies whether the rule is configured for bit-rate or packet rate.
Possible values include bits or pkts.

scheduler-rate-mode : Specifies whether the rule is configured to support a percent of
the channel rate or an effective rate. Possible values include
relative or absolute.

Channel No. : Port on which data is flowing (0-3).
scheduler-class-index : TCP traffic class index; 0-14 for T4/T5 and 0-30 for T6 adapters.
maximum-rate : Bit rate (Kbps) for this TCP stream. The lower limit is 10 Kbps.
Packet size : TCP mss size in bytes; for example - for an MTU of 1500, use a

packet size of 1460.

 Class Weighted Round Robin

Incoming traffic flows from various applications can be prioritized and provisioned using a

weighted round-robin scheduling algorithm. Configure it using the below command.

[root@host~]# cxgbtool <ethX> sched-class params type packet level cl-wrr

channel <Channel No.> class <scheduler-class-index> weight <Y>

Traffic Management

Chelsio Unified Wire for Linux 303

Here,

ethX : Chelsio interface.
Channel No. : Port on which data is flowing (0-3).
scheduler-class-index : TCP traffic class index; 0-14 for T4/T5 and 0-30 for T6 adapters.
weight : Weight to be used for a weighted-round-robin scheduling

hierarchy. Possible values include 1 to 99.

 Channel Rate Limiting

This scheduler hierarchy level can be used to rate limit individual channels. Atleast one class

should be specified while configuring Channel Rate Limiting using the below command.

[root@host~]# cxgbtool <ethX> sched-class params type packet level ch-rl

rate-unit <scheduler-rate-unit> rate-mode <scheduler-rate-mode> channel

<Channel No.> class <scheduler-class-index> max-rate <maximum-rate>

Here,

ethX : Chelsio interface.
scheduler-rate-unit : Specifies whether the traffic management rule is configured for

bit-rate or packet-rate. Possible values include bits or pkts.
scheduler-rate-mode : Specifies whether the traffic management rule is configured to

support a percent of the channel rate or an effective rate. Possible
values include relative or absolute.

Channel No. : Port on which data is flowing (0-3).
scheduler-class-index : TCP traffic class index; 0-14 for T4/T5 and 0-30 for T6 adapters.
maximum-rate : Bit rate (Kbps) for this TCP stream. The lower limit is 1 Gbps.

 Listing TM parameters

To view the parameters of a class or a channel,

[root@host~]# cxgbtool <ethX> sched-class show channel <Channel No.> class

<scheduler-class-index>

Channel No. : Port on which data is flowing (0-3).
scheduler-class-index : TCP traffic class index; 0-14 for T4/T5 adapters and 0-30 for T6

adapters.

Traffic Management

Chelsio Unified Wire for Linux 304

3.2. Configuring Traffic Management

 For Non-offloaded connections

Traffic Management of non-offloaded connections is a two step process. In the first step bind

connections to the indicated NIC TX queue using tc utility from iproute2-3.9.0 package. In the

second step bind the indicated NIC TX queue to the specified TCP Scheduler class using the

cxgbtool utility.

1. Load the network driver and bring up the interface.

[root@host~]# modprobe cxgb4

[root@host~]# ifconfig ethX up

2. Bind connections to queues.

[root@host~]# tc qdisc add dev ethX root handle 1: multiq

[root@host~]# tc filter add dev ethX parent 1: protocol all prio 1 u32 match

ip dst <IP address of destination> action skbedit queue_mapping <queue>

3. Now, bind the NIC TX queue with traffic class.

[root@host~]# cxgbtool ethX sched-queue <queue> <class>

Here,

ethX : Chelsio interface
queue : NIC TX queue
class : Class index; 0-14 for T4/T5 adapters and 0-30 for T6 adapters.

If the TX queue is all, * or any negative value, the binding will apply to all of the TX

queues associated with the interface. If the class is unbind, clear or any negative

value, the TX queue(s) will be unbound from any current TX Scheduler Class binding.

Note

For additional binding options, run [root@host~]# man tc Note

Flow mode is not supported for non-offloaded connections. Important

Traffic Management

Chelsio Unified Wire for Linux 305

 For Offloaded connections

Traffic Management of offloaded connections can be configured either by applying COP policies

that associate offloaded connections to classes or by modifying the application.

Both the methods have been described below:

 Applying COP policy

1. Load the TOE driver and bring up the interface.

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig ethX up

2. Create a new policy file (say new_policy_file) and add the following line to associate

connections with the given scheduling class. Class can have values ranging from 0-14 for

T4/T5 adapters and 0-30 for T6 adapters.

Example:

src host 102.1.1.1 => offload class 0

The above example will associate all connections originating from IP address 102.1.1.1 with

scheduling class 0.

3. Compile the policy file using COP.

[root@host~]# cop -d –o <output_policy_file> <new_policy_file>

4. Apply the COP policy.

[root@host~]# cxgbtool ethX policy <output_policy_file>

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

If no specified rule matches a connection, a default setting will be used which

disables offload for that connection. That is, there will always be a final implicit rule

following all the rules in the input rule set of:

all => !offload

Note

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

Traffic Management

Chelsio Unified Wire for Linux 306

 Modifying the application

The application can also be modified to associate connections to scheduling classes. Follow the

steps mentioned below:

1. Determine the TCP socket file descriptor in the application through which data is sent.

2. Declare and initialize a variable in the application.

 int cl=1;

Here,

cl is the TCP traffic class (scheduler-class-index) that the user wishes to assign the data stream

to. This value needs to be in the range of 0-14 for T4/T5 adapters and 0-30 for T6 adapters.

The application will function as per the parameters set for that traffic class.

3. Add socket option definitions.

In order to use setsockopt() to set the options to the TCP socket, the following two definitions

need to be made:

• SOL_SCHEDCLASS used for setting TCP traffic class, which has the value 290.

• IPPROTO_TCP used for setting the type of IP Protocol.

define SOL_SCHEDCLASS 290

define IPPROTO_TCP 6

4. Use the setsockopt() function to set socket options.

The setsockopt() call must be mentioned after the connect() call.

//Get the TCP socket descriptor variable

setsockopt (sockfd , IPPROTO_TCP, SOL_SCHEDCLASS, &cl, sizeof(cl));

Here,

sockfd : The file descriptor of the TCP socket.
&cl : Pointer to the class variables.
sizeof(cl) : The size of the variable.

5. Now, compile the application.

Traffic Management

Chelsio Unified Wire for Linux 307

 Usage

4.1. Non-Offloaded Connections

The following example demonstrates the method to rate limit all TCP connections on class 0 to a

rate of 300 Mbps for Non-offload connections:

1. Load the network driver and bring up the interface.

[root@host~]# modprobe cxgb4

[root@host~]# ifconfig eth0 up

2. Bind connections with destination IP address 192.168.5.3 to NIC TX queue 3.

[root@host~]# tc qdisc add dev eth0 root handle 1: multiq

[root@host~]# tc filter add dev eth0 parent 1: protocol all prio 1 u32 match

ip dst 192.168.5.3 action skbedit queue_mapping 3

3. Bind the NIC TX queue to class 0.

[root@host~]# cxgbtool eth0 sched-queue 3 0

4. Set the appropriate rule for class 0.

[root@host~]# cxgbtool eth0 sched-class params type packet level cl-rl

mode class rate-unit bits rate-mode absolute channel 0 class 0 max-rate

300000 pkt-size 1460

4.2. Offloaded Connections

The following example demonstrates the method to rate limit all TCP connections on class 0 to a

rate of 300 Mbps for offloaded connections:

1. Load the TOE driver and bring up the interface.

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig eth0 up

2. Create a new policy file (say new_policy_file) and add the following line to associate

connections with the given scheduling class.

src host 102.1.1.1 => offload class 0

Flow mode is not supported for non-offloaded connections. Important

Traffic Management

Chelsio Unified Wire for Linux 308

3. Compile the policy file using COP.

[root@host~]# cop -d –o <output_policy_file> <new_policy_file>

4. Apply the COP policy.

[root@host~]# cxgbtool eth0 policy <output_policy_file>

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

5. Set the appropriate rule for class 0.

[root@host~]# cxgbtool ethX sched-class params type packet level cl-rl mode

class rate-unit bits rate-mode absolute channel 0 class 0 max-rate 300000

pkt-size 1460

4.3. Offloaded Connections with Modified Application

The following example demonstrates the method to rate limit all TCP connections on class 0 to a

rate of 300 Mbps for offloaded connections with modified application.

1. Load the TOE driver and bring up the interface.

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig eth0 up

2. Modify the application as mentioned in the Configuring Traffic Management section.

3. Set the appropriate rule for class 0.

[root@host~]# cxgbtool ethX sched-class params type packet level cl-rl mode

class rate-unit bits rate-mode absolute channel 0 class 0 max-rate 300000

pkt-size 1460

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

Traffic Management

Chelsio Unified Wire for Linux 309

4.4. Inline TLS Offload Connections

Refer to Inline TLS Offload chapter for the configuration steps. To rate limit Inline TLS Offload

connections, follow the steps mentioned below:

1. Load the TOE driver and bring up the interface.

[root@host~]# modprobe t4_tom

[root@host~]# ifconfig eth0 up

2. Create a new policy file and add the following line for TCP port (to be TLS offloaded), 443

in this case. Bind the connections to class 0.

src or dst port 443 => offload tls mss 32 bind random class 0

all => offload

The all => offload is added to ensure that rest of the TCP ports will be regular TOE offloaded.

3. Compile the policy file using COP.

[root@host~]# cop -d –o <output_policy_file> <new_policy_file>

4. Apply the COP policy.

[root@host~]# cxgbtool ethX policy <output_policy_file>

The applied cop policies can be read using,

[root@host~]# cat /proc/net/offload/toeX/read-cop

5. Set the appropriate rule for class 0 with the required rate and burst size 16384.

[root@host~]# cxgbtool ethX sched-class params type packet level cl-rl mode

flow rate-unit bits rate-mode absolute channel 0 class 0 max-rate 5000 pkt-

size 1460 burst-size 16384

This rule will rate limit all Inline TLS connections on class 0 to 5 Mbps per connection.

The policy applied using cxgbtool is not persistent and should be applied every

time drivers are reloaded, or the machine is rebooted.
Note

Traffic Management

Chelsio Unified Wire for Linux 310

 Software/Driver Unloading

Reboot the system to unload the driver. To unload without rebooting, refer Unloading the TOE

driver section of Network (NIC/TOE) chapter.

Unified Boot

Chelsio Unified Wire for Linux 311

XXVI. Unified Boot

Unified Boot

Chelsio Unified Wire for Linux 312

 Introduction

PXE is short for Preboot eXecution Environment and is used for booting computers over an

Ethernet network using a Network Interface Card (NIC). FCoE SAN boot process involves

installation of an operating system to an FC/FCoE disk and then booting from it. iSCSI SAN boot

process involves installation of an operating system to an iSCSI disk and then booting from it.

This section of the guide explains how to configure and use Chelsio Unified Boot Option ROM

which flashes PXE, iSCSI and FCoE Option ROM onto Chelsio’s adapters. It adds functionalities

like PXE, FCoE and iSCSI SAN boot. It also supports iPXE.

1.1. Hardware Requirements

 Supported platforms

Following is the list of hardware platforms supported by Chelsio Unified Boot software:

 DELL PowerEdge R610

 DELL PowerEdge R720

 IBM X3650 M4*

 Lenovo X3650 M5

 Lenovo ThinkSystem SR650

 HP ProLiant DL180 gen9

 HP ProLiant DL385G2

 Supermicro X10DRi

 Supermicro X11SSL-CF

 ASUS z390

 QuantaGrid D51B-1U

 AMD EPYC 7551

* If system BIOS version is lower than 1.5 and both Legacy and uEFI are enabled, system

will hang during POST. Upgrade the BIOS version to 1.5 or higher to avoid this issue.

 Supported Switches

Following is the list of network switches supported by Chelsio Unified Boot software:

 Cisco Nexus 5010 with 5.1(3) N1 (1a) firmware.

 Arista DCS-7124S-F

 Mellanox SX_PPC_M460EX

Other platforms/switches have not been tested and are not guaranteed to work.

 Supported Adapters

Following are the Chelsio adapters that are compatible with Chelsio Unified Boot software:

Unified Boot

Chelsio Unified Wire for Linux 313

 T62100-CR

 T62100-LP-CR

 T62100-SO-CR*

 T62100-SO-OCP3*

 T6425-CR

 T6225-CR

 T6225-OCP3*

 T6225-SO-OCP3*

 T6225-SO-CR*

 T6225-LL-CR

 T580-CR

 T580-LP-CR

 T580-SO-CR*

 T580-OCP-SO*

 T540-CR

 T540-LP-CR

 T520-CR

 T520-LL-CR

 T520-SO-CR*

 T520-OCP-SO*

 T520-BT

 T540-BT

* Only PXE supported

1.2. Software Requirements

Chelsio Unified Boot Option ROM software requires Disk Operating System to flash PXE

ROM onto Chelsio adapters. The installation of the following Linux distributions is supported using

Chelsio inbox drivers. No separate DUDs are required.

Linux Distribution Drivers

RHEL/Rocky/AlmaLinux 9.3, 5.14.0-362.8.1.el9_3

PXE, FCoE, iSCSI

RHEL/Rocky/AlmaLinux 9.2, 5.14.0-284.11.1.el9_2

RHEL/Rocky/AlmaLinux 8.9, 4.18.0-513.5.1.el8_9

RHEL/Rocky/AlmaLinux 8.8, 4.18.0-477.10.1.el8_8

RHEL 7.9, 3.10.0-1160.el7

SLES 15 SP4, 5.14.21-150400.22-default

1.3. Pre-requisites

A DOS bootable USB flash drive or Floppy Disk is required for updating firmware, Option ROM

etc.

Other OS versions have not been tested and are not guaranteed to work.

Note

Unified Boot

Chelsio Unified Wire for Linux 314

 Secure Boot

Secure Boot, a high-performance computing software solution is a method to restrict which

binaries can be executed to boot the system. With Secure Boot, the system BIOS will only allow

the execution of boot loaders that carry the cryptographic signature of trusted entities. In other

words, anything run in the BIOS must be signed with a key that the system knows is trustworthy.

With each reboot of the server, every executed component is verified.

The Chelsio Drivers are in-boxed in major Linux Distributions mentioned in the Software

Requirements and can be used for OS installation after enabling Secure Boot in System BIOS.

Unified Boot

Chelsio Unified Wire for Linux 315

 Flashing Firmware and Option ROM

Depending on the boot mode selected, Chelsio Unified Boot provides the following methods to

flash Firmware, Option ROM, and boot configuration onto the Chelsio adapters:

• Legacy mode: cfut4

• uEFI mode:

o HII

o drvcfg

o Firmware Manager Protocol (FMP)

• OS Level:

o cxgbtool

These methods also provide the functionality to update/erase Hardware configuration and Phy

Firmware files.

3.1. Preparing USB flash drive

This document assumes that you are using a USB flash drive as a storage media for the

necessary files. Follow the steps below to prepare the drive:

1. Create a DOS bootable USB flash drive. (Click here for instructions)

2. Create a directory CHELSIO on the USB flash drive.

3. If you have not done already, then download the driver package from Chelsio Download

Center.

4. Extract the downloaded package and change your working directory to OptionROM

directory.

[root@host~]# tar zxvfm ChelsioUwire-x.x.x.x.tar.gz

[root@host~]# cd ChelsioUwire-x.x.x.x/Uboot/OptionROM

5. Copy all the files and place them in the CHELSIO directory created on the USB flash drive.

6. Plug-in the USB flash drive in the system on which the Chelsio CNA is installed.

7. Reboot the system.

Important It is highly recommended to use the same Option ROM (type and version) on

all the Chelsio adapters present in the system.

http://blogs.technet.com/b/csstwplatform/archive/2012/06/26/how-to-create-a-ms-dos-bootable-usb-flash-drive.aspx
https://service.chelsio.com/
https://service.chelsio.com/

Unified Boot

Chelsio Unified Wire for Linux 316

3.2. Legacy

1. In BIOS, configure the system which has the Chelsio adapter to boot in Legacy mode.

2. Boot the system from the plugged in USB flash drive and change your working directory to

the CHELSIO directory.

C:\>cd CHELSIO

3. Run the following command to list all the Chelsio adapters present on the system. The list

displays a unique index for each adapter found.

C:\CHELSIO>cfut4 –l

4. Delete any previous version of Option ROM flashed onto the adapter.

C:\CHELSIO>cfut4 –d <idx> -xb

Unified Boot

Chelsio Unified Wire for Linux 317

Here, idx is the adapter index found in step iii (0 in this case)

5. Delete any previous firmware using the following command.

C:\CHELSIO>cfut4 -d <idx> -xh –xf

6. Delete any previous Option ROM settings.

C:\CHELSIO>cfut4 -d <idx> -xc

7. Run the following command to flash the appropriate firmware.

C:\CHELSIO>cfut4 -d <idx> -uf <firmware_file>.bin

Here, firmware_file is the firmware image file present in the CHELSIO directory.

Unified Boot

Chelsio Unified Wire for Linux 318

8. Flash the Unified Boot Option ROM using the following command.

C:\CHELSIO>cfut4 -d <idx> -ub cubt4.bin

Here, cubt4.bin is the Unified Boot Option ROM image file present in the CHELSIO directory.

9. Flash the boot configuration setting which will enable PXE and disable iSCSI and FCoE.

C:\CHELSIO>cfut4 -d <idx> -uc boot.cfg

Unified Boot

Chelsio Unified Wire for Linux 319

10. In case of multiple adapters in the system, repeat the steps from 44 through 9. to update/flash

the firmware, Option ROM, and boot configuration on all of them.

11. To configure the base MAC address (optional), use the below command:

C:\CHELSIO>cfut4 -d <idx> -um <Hex MAC Address>

Example:

C:\CHELSIO>cfut4 -d 0 -um 000743000123

12. Reboot the system for changes to take effect.

3.3. uEFI

 Loading uEFI driver

1. In BIOS, configure the system which has the Chelsio adapter to boot in uEFI mode.

For Supermicro systems, enable Network Stack as well before proceeding. Note

Unified Boot

Chelsio Unified Wire for Linux 320

2. Boot to EFI Shell.

3. Issue command drivers to determine if the Chelsio uEFI driver is already loaded. The below

image shows that the driver is loaded.

If the driver is not loaded, continue to step 5.

Unified Boot

Chelsio Unified Wire for Linux 321

4. Note the handle and unload the driver.

fs0:\CHELSIO\> unload -n <driver_handle>

Example:

5. Load the uEFI driver (ChelsioUD.efi) present in the CHELSIO directory.

 drvcfg

1. Ensure that the Chelsio uEFI driver is loaded correctly as mentioned in the Loading uEFI

driver section.

2. Run the following command to launch the Unified Boot Setup utility.

3. Choose the Chelsio adapter which needs to be configured.

Unified Boot

Chelsio Unified Wire for Linux 322

4. Highlight Enter flash utility and press [Enter].

5. Highlight Option ROM and press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 323

6. Highlight Update and press [Enter].

7. Enter the path to the Option ROM file and press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 324

8. Similarly, you can use the above method to update firmware (t6fw-x.xx.x.x.bin/t5fw-

x.xx.x.x.bin) and boot configuration (boot.cfg) present in the CHELSIO directory.

9. For multiple adapters in the system, repeat the above steps to update/flash the firmware,

Option ROM, and boot configuration on all the adapters.

10. Reboot the machine for changes to take effect.

 HII

1. Go into the BIOS setup.

2. Chelsio HII should be listed as Chelsio T5/T6 as shown below. Highlight it and press [Enter].

If Chelsio T5/T6 is not listed,

• Load the Chelsio uEFI driver as mentioned in the Loading uEFI driver section.

• Flash the Option ROM and Firmware as mentioned in the drvcfg section.

3. Highlight the Chelsio adapter to be configured and press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 325

4. Highlight Flash Utility and press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 326

5. Erase or update firmware using the methods explained below:

a. Erase existing firmware

i. Select [Erase] as Flash Operation

ii. Select [FW File] as Flash File Type

iii. Select Update/Erase

iv. Press [Y] to confirm

b. Update firmware

i. Select [Update] as Flash Operation

ii. Select [FW File] as Flash File Type

iii. Enter full path to the firmware file for Enter File Name, e.g., CHELSIO\t6fw-

1.16.29.0.bin.

iv. Press [Enter]

v. Select Update/Erase

vi. Press [Y] to confirm

6. Similarly, you can use the above method to update/erase Option ROM (cubt4.bin) and boot

configuration (boot.cfg) present in the CHELSIO directory.

7. For multiple adapters in the system, repeat the above steps to update/flash the firmware,

Option ROM, and boot configuration on all the adapters.

8. Reboot the machine for changes to take effect.

 Firmware Management Protocol (FMP)

HP machines support the Firmware Management Protocol (FMP) interface, in addition to HII. This

can be used to update the Option ROM on Chelsio adapters.

 Enabling FMP

1. Ensure that Chelsio uEFI driver is loaded correctly as mentioned in Loading uEFI driver

section

2. Run the command fwupdate -l and Chelsio T6 adapter should be listed as shown below:

 Upgrading Firmware

▪ Using CLI

1. Use the adapter’s device name to update the firmware:

FS1:\CHELSIO\> fwupdate -d <device_name> -f cubt4.bin

Example:

Unified Boot

Chelsio Unified Wire for Linux 327

2. Reboot machine for changes to take effect.

▪ Using FMP

1. Reboot the system and press F9 to access System Utilities

2. Go to Embedded Applications > Firmware Update > Chelsio T6 Controller

3. Highlight Select a firmware file option and hit [Enter].

4. Select the USB flash drive which contains the latest Option ROM and press [Enter].

5. Select Option ROM file cubt4.bin and press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 328

The file should show up in the Selected firmware file field.

6. Select Start firmware update and press [Enter].

7. After Firmware update completed successfully prompt appears, reboot the machine for

changes to take effect.

Unified Boot

Chelsio Unified Wire for Linux 329

3.4. cxgbtool (OS Level)

Follow the steps mentioned below to flash the Option ROM onto Chelsio adapters using cxgbtool

utility:

1. If not done already, install the Network driver and cxgbtool.

[root@host~]# cd ChelsioUwire-x.x.x.x

[root@host~]# make install

2. Load the Network driver.

[root@host~]# modprobe cxgb4

3. Delete any previous version of Option ROM flashed onto the adapter.

[root@host~]# cxgbtool ethX loadboot clear

4. Flash the Option ROM onto the Chelsio adapter.

[root@host~]# cd ChelsioUwire-x.x.x.x/Uboot/OptionROM/

[root@host~]# cxgbtool ethX loadboot cubt4.bin

5. Flash the default boot configuration onto the adapter.

 [root@host~]# cd ChelsioUwire-x.x.x.x/Uboot/OptionROM/

 [root@host~]# cxgbtool ethX loadboot-cfg boot.cfg

6. For multiple adapters in the system, repeat the steps from 3 through 5 to update/flash the

Option ROM and boot configuration on all the adapters.

7. Reboot the system for changes to take effect.

Unified Boot

Chelsio Unified Wire for Linux 330

 Configuring PXE Server

The following components are required to configure a PXE Server:

• DHCP Server

• TFTP Server

PXE server configuration steps for different operating systems can be found on the following links:

Linux

• https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/installation_guide/chap-installation-server-setup

Windows

• http://technet.microsoft.com/en-us/library/cc771670%28WS.10%29.aspx

• http://tftpd32.jounin.net/ (Use port # 67, set PXE option and provide bootable file name in

settings)

• http://unattended.sourceforge.net/pxe-win2k.html

VMware

• http://www.vstellar.com/2017/07/25/automating-esxi-deployment-using-pxe-boot-and-

kickstart/

• http://fdo-workspace.blogspot.in/2016/11/building-tftp-dhcp-for-pxe-esxi-65.html

Chelsio Communications does not take any responsibility regarding contents given

in below mentioned links. They are provided for example purposes only.
Note

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-installation-server-setup
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-installation-server-setup
http://technet.microsoft.com/en-us/library/cc771670%28WS.10%29.aspx
http://tftpd32.jounin.net/
http://unattended.sourceforge.net/pxe-win2k.html
http://www.vstellar.com/2017/07/25/automating-esxi-deployment-using-pxe-boot-and-kickstart/
http://www.vstellar.com/2017/07/25/automating-esxi-deployment-using-pxe-boot-and-kickstart/
http://fdo-workspace.blogspot.in/2016/11/building-tftp-dhcp-for-pxe-esxi-65.html

Unified Boot

Chelsio Unified Wire for Linux 331

 PXE Boot Process

Before proceeding, ensure that the Chelsio adapter has been flashed with the provided

firmware and Option ROM (See Flashing Firmware and option ROM).

5.1. Legacy PXE Boot

1. After configuring the PXE server, make sure the PXE server works. Then reboot the client

machine.

2. Press [Alt+C] when the message to configure the Chelsio adapters appears on the screen.

3. The configuration utility will appear as below:

Choose the adapter on which you flashed the option ROM image and press [Enter].

4. Enable the adapter BIOS using arrow keys if not already enabled And press [Enter].

Use the default values for Boot Mode, EDD and EBDA Relocation parameters,

unless instructed otherwise.

Note

Unified Boot

Chelsio Unified Wire for Linux 332

5. Choose PXE from the list to configure And press [Enter].

6. Use the arrow keys to highlight the appropriate function among the supported NIC functions

and press [Enter] to select.

7. Enable NIC function bios if not already enabled.

Choose the boot port to try the PXE boot. It is recommended only to enable functions and

ports that are going to be used. Note that enabling NIC Func 00 will enable port 0 for PXE,

enabling NIC Func 01 will enable port 1, and so on for the NIC function.

Unified Boot

Chelsio Unified Wire for Linux 333

8. Press [F10] or [Esc] and then [Y] to save configuration changes.

9. Reboot the system.

10. Allow the Chelsio option ROM to initialize and setup PXE devices. DO NOT PRESS ALT-S

to skip Chelsio option ROM.

11. In the system setup, choose any of the Chelsio PXE devices as the first boot device.

12. Reboot. DO NOT PRESS ALT-S to skip Chelsio option ROM, during POST.

13. Press [F12] key when prompted to start PXE boot.

Unified Boot

Chelsio Unified Wire for Linux 334

5.2. uEFI PXE Boot

 HII

This section describes the method to configure and use Chelsio uEFI PXE interfaces using HII.

1. Reboot the system and go into the BIOS setup.

2. Chelsio HII should be listed as Chelsio T5/T6. Highlight it and press [Enter].

3. Select the Chelsio adapter to be configured and press [Enter].

Ensure that the Chelsio uEFI driver is loaded correctly as mentioned in Loading

uEFI driver section.

Note

• Only uEFI v2.3.1, v2.4 and v2.5 supported.

• Any other uEFI version is NOT SUPPORTED and may render your system

unusable.

Important

Unified Boot

Chelsio Unified Wire for Linux 335

4. Select Configuration Utility and press [Enter].

5. Enable adapter BIOS if not already enabled.

6. Select Chelsio Protocol Selection and press [Enter].

It is highly recommended that you use the Save Changes option every time a

parameter/option is changed.
Note

Unified Boot

Chelsio Unified Wire for Linux 336

7. Select PXE and press [Enter].

8. Choose the boot port to try PXE boot. It is recommended to enable only those functions and

ports which are going to be used. Note that enabling PXE Function 0 will enable port 0 for

PXE, enabling PXE Function 1 will enable port 1, and so on, for the NIC function.

9. Select Save Changes and press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 337

10. Reboot the system and in BIOS, choose any of the available Chelsio PXE devices.

11. Reboot and press [F12] key when prompted to start PXE boot.

Unified Boot

Chelsio Unified Wire for Linux 338

 drvcfg

This section describes the method to configure and use Chelsio uEFI PXE interfaces using drvcfg.

1. Boot the system into EFI shell.

2. Run the following command to launch the Unified Boot Setup utility.

3. Choose the Chelsio adapter which needs to be configured.

4. Highlight Enter config utility and press [Enter].

5. Further configuration steps are similar from step 4 of the Legacy PXE Boot section.

Unified Boot

Chelsio Unified Wire for Linux 339

 FCoE Boot Process

Before proceeding, ensure that the Chelsio CNA has been flashed with the provided firmware and

option ROM (See Flashing firmware and option ROM).

6.1. Legacy FCoE Boot

1. Reboot the system.

2. Press [Alt+C] when the message to configure the Chelsio adapters appears on the screen.

3. The configuration utility will appear as below:

Choose the adapter on which you flashed the option ROM image and press [Enter].

4. Enable the adapter BIOS if not already enabled and press [ENTER].

Use the default values for Boot Mode, EDD and EBDA Relocation parameters,

unless instructed otherwise.

Note

Unified Boot

Chelsio Unified Wire for Linux 340

5. Choose FCoE from the list to configure and press [Enter].

6. Choose the first option, Configure function parameters, from the list of parameter type

and press [Enter].

7. Enable FCoE BIOS if not already enabled.

Unified Boot

Chelsio Unified Wire for Linux 341

8. Choose the order of the ports to discover FCoE targets.

9. Set discovery timeout to a suitable value. Recommended value is >= 30.

10. Press [F10] or [Esc] and then [Y] to save the configuration.

Unified Boot

Chelsio Unified Wire for Linux 342

11. Choose Configure boot parameters.

12. Select the first boot device and press [Enter] to discover FC/FCoE targets connected to the

switch. Wait till all reachable targets are discovered.

13. List of discovered targets will be displayed. Highlight a target using the arrow keys and

press [Enter] to select.

Unified Boot

Chelsio Unified Wire for Linux 343

14. From the list of LUNs displayed for the selected target, choose one on which operating

system has to be installed. Press [Enter].

15. Press [F10] or [Esc] and then [Y] to save the configuration.

16. Reboot the machine.

Unified Boot

Chelsio Unified Wire for Linux 344

17. During POST, allow the Chelsio Option ROM to discover FCoE targets.

18. Enter BIOS setup and choose the FCoE disk discovered through the Chelsio adapter as the

first boot device.

19. Reboot and boot from the FCoE disk or install the required OS using PXE.

Unified Boot

Chelsio Unified Wire for Linux 345

6.2. uEFI FCoE Boot

 HII

This section describes the method to configure and use Chelsio uEFI FCoE interfaces using HII.

1. Reboot the system and go into BIOS setup.

2. Select Chelsio T5/T6 and press [Enter].

3. Select the Chelsio adapter to be configured and press [Enter].

• Only uEFI v2.3.1, v2.4 and v2.5 supported.

• Any other uEFI version is NOT SUPPORTED and may render your system

unusable.

Important

Ensure that the Chelsio uEFI driver is loaded correctly as mentioned in the

Loading uEFI driver section.

Note

Unified Boot

Chelsio Unified Wire for Linux 346

4. Select Configuration Utility and press [Enter].

5. Enable adapter BIOS if not already enabled.

6. Select Chelsio Protocol Selection and press [Enter].

7. Select FCoE and press [Enter].

It is highly recommended that you use the Save Changes option every time a

parameter/option is changed.
Note

Unified Boot

Chelsio Unified Wire for Linux 347

8. Under Function Parameters, enable FCoE BIOS, if not already enabled.

9. Set discovery timeout to a suitable value. The recommended value is >= 30.

10. Choose the order of the ports to discover FCoE targets.

Unified Boot

Chelsio Unified Wire for Linux 348

11. Under the first boot device, select Discover Target and press [Enter] to discover FC/FCoE

targets connected to the switch. Wait till all reachable targets are discovered.

12. List of discovered targets will be displayed. Highlight a target to select it and press [Enter].

13. List of LUNs for the selected target will be displayed. Highlight a LUN to select it and press

[Enter].

Unified Boot

Chelsio Unified Wire for Linux 349

14. Select Save Changes and press [Enter].

15. Reboot the system for changes to take effect.

16. The discovered LUN should appear in the Boot Configuration section and system BIOS

section.

17. Select the LUN as the first boot device and exit from BIOS.

18. Either boot from the LUN or install the required OS.

Unified Boot

Chelsio Unified Wire for Linux 350

 drvcfg

This section describes the method to configure and use Chelsio uEFI FCoE interfaces using

drvcfg.

1. Boot the system into EFI shell.

2. Run the following command to launch the configuration utility.

3. Choose the Chelsio adapter on which needs to be configured.

4. Highlight Enter config utility and press [Enter].

5. Further configuration steps are similar from step 4 of the Legacy FCoE Boot section.

Unified Boot

Chelsio Unified Wire for Linux 351

 iSCSI Boot Process

Before proceeding, ensure that the Chelsio CNA has been flashed with the provided firmware

and option ROM (Refer to the Flashing firmware and option ROM section).

7.1. Legacy iSCSI Boot

1. Reboot the system.

2. Press [Alt+C] when the message to configure Chelsio adapters appears on the screen.

3. The configuration utility will appear as below:

Choose the adapter on which you flashed the option ROM image and press [Enter].

4. Enable the adapter BIOS if not already enabled and press [Enter].

Use the default values for Boot Mode, EDD and EBDA Relocation parameters,

unless instructed otherwise.

Note

Unified Boot

Chelsio Unified Wire for Linux 352

5. Choose iSCSI from the list to configure and press [Enter].

6. Choose the first option, Configure Function Parameters, from the list of parameter type

and press [Enter].

7. Enable iSCSI BIOS if not already enabled. iBFT (iSCSI Boot Firmware Table) will be

selected by default. Only iBFT is supported in Linux.

You can also configure the number of iSCSI login attempts (retries) in case the network is

unreachable or slow

8. Choose the order of the ports to discover iSCSI targets.

Unified Boot

Chelsio Unified Wire for Linux 353

9. Set discovery timeout to a suitable value. Recommended value is >= 30.

10. Press [Esc] and then [Y] to save the configuration.

11. Go back and choose Configure Initiator Parameters to configure the initiator related

properties.

Unified Boot

Chelsio Unified Wire for Linux 354

12. Initiator properties such as IQN, Header Digest, Data Digest are displayed. Change the

values appropriately or continue with the default values. Press [F10] to save the

configuration.

13. CHAP authentication is disabled by default. To enable and configure, go back and choose

Configure CHAP Parameters.

MaxBurstLength and FirstBurstLength range from 512 to 16777215 bytes.

Note

Unified Boot

Chelsio Unified Wire for Linux 355

14. Enable CHAP authentication by selecting ONE-WAY or MUTUAL in the CHAP Policy field.

Next, choose the CHAP method. Finally, provide Initiator and Target CHAP credentials as

per the authentication method selected. Press [F10] to save the configuration.

15. Go back and choose Configure Network Parameters to configure the iSCSI Network related

properties.

16. Select the port using which you want to connect to the target. Press [Enter].

Unified Boot

Chelsio Unified Wire for Linux 356

17. Select Yes in the Enable DHCP field to configure port using DHCP or No to manually

configure the port. Press [F10] to save the configuration.

18. Go back and choose Configure Target Parameters to configure iSCSI target related

properties.

19. If you want to discover target using DHCP, select Yes in the Discover Boot Target via DHCP

field. To discover target through static IP, select No and provide the target IP and press [F10]

to save the configuration. The default TCP port selected is 3260.

Unified Boot

Chelsio Unified Wire for Linux 357

20. Go back and choose Discover iSCSI Target (s) to connect to a target.

21. Select the portal group on which iSCSI service is provided by the target.

22. A list of available targets will be displayed. Select the target you wish to connect to and press

[Enter].

Unified Boot

Chelsio Unified Wire for Linux 358

23. A list of LUNs configured on the selected target will be displayed. Select the LUN you wish

to connect to and press [Enter].

24. Press [Esc] and then [Y] to save the configuration.

25. Reboot the machine.

26. During POST, allow the Chelsio Option ROM to discover iSCSI targets.

Unified Boot

Chelsio Unified Wire for Linux 359

27. Enter BIOS setup and choose iSCSI target LUN discovered through the Chelsio adapter

as the first boot device.

28. Reboot and boot from the iSCSI Target LUN or install the required OS using PXE.

7.2. uEFI iSCSI Boot

 HII

This section describes the method to configure and use Chelsio uEFI iSCSI interfaces using HII.

1. Reboot the system and go into BIOS setup.

2. Select Chelsio T5/T6 and press [Enter].

• Only uEFI v2.3.1, v2.4 and v2.5 supported.

• Any other uEFI version is NOT SUPPORTED and may render your system

unusable.

Important

Unified Boot

Chelsio Unified Wire for Linux 360

3. Select the Chelsio adapter to be configured and press [Enter].

4. Select Configuration Utility and press [Enter].

Ensure that the Chelsio uEFI driver is loaded correctly as mentioned in the

Loading uEFI driver section.

Note

Unified Boot

Chelsio Unified Wire for Linux 361

5. Enable adapter BIOS if not already enabled.

6. Select Chelsio Protocol Selection and press [Enter].

7. Select iSCSI and press [Enter].

8. Under Function Parameters, enable iSCSI BIOS, if not already enabled.

It is highly recommended that you use the Save Changes option every time a

parameter/option is changed.
Note

Unified Boot

Chelsio Unified Wire for Linux 362

9. Set discovery timeout to a suitable value. The recommended value is >= 30.

10. Choose the order of the ports to discover iSCSI targets.

Unified Boot

Chelsio Unified Wire for Linux 363

11. Under Initiator Parameters, iSCSI Initiator properties such as IQN, Header Digest, Data

Digest are displayed. Change the values appropriately or continue with the default values.

12. Under the first port, select Enable DHCP field, press [Enter], and select Enabled. This will

configure port using DHCP. Select Disabled to manually configure the port.

MaxBurstLength and FirstBurstLength range from 512 to 16777215 bytes.

Note

Unified Boot

Chelsio Unified Wire for Linux 364

13. Under Target Parameters, select Enabled for the Boot Target via DHCP parameter to

discover target using DHCP.

To discover target via static IP, select Disabled and provide the target IP.

Unified Boot

Chelsio Unified Wire for Linux 365

14. CHAP authentication is disabled by default. To enable and configure, highlight CHAP Policy

and hit [Enter]. Select the policy type from the corresponding pop-up and press [Enter] again.

15. Provide Initiator and Target CHAP credentials as per the CHAP policy selected.

Unified Boot

Chelsio Unified Wire for Linux 366

16. Select Discover Target and press [Enter] to discover iSCSI targets connected to the

switch. Wait till all reachable targets are discovered.

17. A list of available targets will be displayed. Select the target you wish to connect to and hit

[Enter].

18. A list of LUNs configured on the selected target will be displayed. Select the LUN you

wish to connect to and hit [Enter].

Unified Boot

Chelsio Unified Wire for Linux 367

19. Select Save Changes and press [Enter].

20. Reboot the system for changes to take effect.

21. The discovered LUN should appear in the Boot Configuration/ Boot Information section
and system BIOS.

22. Select the LUN as the first boot device and exit from BIOS.

23. Either boot from the LUN or install the required OS.

Unified Boot

Chelsio Unified Wire for Linux 368

 drvcfg

This section describes the method to configure and use Chelsio uEFI iSCSI interfaces using

drvcfg.

1. Boot the system into EFI shell.

2. Run the following command to launch the configuration utility.

3. Choose the Chelsio adapter which needs to be configured.

4. Highlight Enter config utility and press [Enter].

5. Further configuration steps are similar from step 4 of the Legacy iSCSI Boot section.

Unified Boot

Chelsio Unified Wire for Linux 369

 Update Option ROM settings

8.1. Default settings

If you wish to restore option ROM settings to their default values. That is PXE enabled, iSCSI and

FCoE disabled, use any of the methods mentioned below:

 Using Option ROM (boot level)

• Legacy PXE

Boot the system into Chelsio’s Unified Boot Setup utility and press F8.

• uEFI PXE

Boot the system into uEFI mode and press F3.

Unified Boot

Chelsio Unified Wire for Linux 370

 Using cxgbtool (OS level)

Change your working directory to OptionROM directory and use cxgbtool to flash the default

boot configuration onto the adapter.

[root@host~]# cd ChelsioUwire-x.x.x.x/Uboot/OptionROM/

[root@host~]# cxgbtool <ethX> loadboot-cfg boot.cfg

The below command can be used to read the current settings.

[root@host~]# cxgbtool <ethX> readboot-cfg

8.2. Custom Settings (using cxgbtool)

cxgbtool utility can modify/update the following Option ROM settings using modifyboot-cfg option:

• PXE, FCoE and iSCSI BIOS

• Per port:

o PXE Boot

o VLAN

 Updating BIOS value

Use the below command to enable/disable PXE/FCoE/iSCSI boot for all the ports of the adapter.

[root@host~]# cxgbtool <ethX> modifyboot-cfg bios <value>

Where,

ethX : Chelsio interface.
value : Bitwise OR of boot types that need to be enabled. Ranging from 0x0 – 0x7.

PXE (NIC) = 0x1
FCoE = 0x2
iSCSI = 0x4

Examples:

• To enable NIC and FCoE boot on all the ports,

Unified Boot

Chelsio Unified Wire for Linux 371

• To enable only iSCSI boot on all the ports,

 Per Port settings

Use the below command to enable/disable PXE (NIC) boot per port.

[root@host~]# cxgbtool <ethX> modifyboot-cfg port <port no.> <param>

Where,

ethX : Chelsio interface.
port no. : Port number ranging from 0 – 3.
param : en_nicboot to enable and dis_nicboot to disable NIC boot for the port.

Example:

• To disable NIC boot on Port 0,

Use the below command to set the VLAN id for the port.

[root@host~]# cxgbtool <ethX> modifyboot-cfg port <port no.> vlan <id>

Where,

ethX : Chelsio interface.
port no. : Port number ranging from 0 – 3.
id : VLAN id ranging from 0 – 4095.

Example:

• To set vlan id 50 on Port 1,

For more information, refer to cxgbtool man page using man cxgbtool. Note

Unified Boot

Chelsio Unified Wire for Linux 372

 iPXE

iPXE is the leading, free, open source network boot firmware. It provides a full PXE

implementation enhanced with additional features such as boot from a web server via HTTP,

automating boot commands etc. The following are supported:

• TFTP Boot – Legacy & uEFI

• HTTP Boot – uEFI

• Linux (RHEL 9.2), Windows (10 Client, Server 2019/2022)

• Chainload into iPXE

9.1. Configuring iPXE Server for Linux OS installation

Before proceeding, ensure that the Linux iPXE Server is configured for TFTP boot or HTTP boot.

Follow the below steps to chainload iPXE:

1. Clone the iPXE repo.

[root@server ~]# git clone https://github.com/ipxe/ipxe

[root@server ~]# cd ipxe

[root@server ipxe]# git checkout 06e229590c6e94c1dd8606a374714f7cfc50241a

2. Build the code to generate undionly.kpxe for Legacy or ipxe.efi for uEFI modes.

Legacy:

[root@server ipxe]# cd src

[root@server src]# make bin/undionly.kpxe

uEFI:

[root@server ipxe]# cd src

[root@server src]# make bin-x86_64-efi/ipxe.efi

3. Copy the generated files to TFTP or HTTP server directories.

Legacy TFTP:

[root@server ~]# mkdir -p /var/lib/tftpboot/ipxe

[root@server ~]# cp undionly.kpxe /var/lib/tftpboot/ipxe/.

uEFI TFTP:

[root@server ~]# mkdir -p /var/lib/tftpboot/ipxe

[root@server ~]# cp ipxe.efi /var/lib/tftpboot/ipxe/.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_a_standard_rhel_9_installation/assembly_preparing-for-your-installation_installing-rhel#preparing-for-a-network-install_assembly_preparing-for-your-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_a_standard_rhel_9_installation/assembly_preparing-for-your-installation_installing-rhel#preparing-to-install-from-the-network-using-http_assembly_preparing-for-your-installation
https://github.com/ipxe/ipxe

Unified Boot

Chelsio Unified Wire for Linux 373

uEFI HTTP:

[root@server ~]# mkdir -p /var/www/ipxe

[root@server ~]# cp ipxe.efi /var/www/ipxe/.

4. Update the dhcp server configuration file /etc/dhcp/dhcpd.conf.

Legacy/uEFI TFTP:

option client-architecture code 93 = unsigned integer 16;

 if exists user-class and option user-class = "iPXE" {

 filename "http://101.1.1.66/boot.php";

 } elsif option client-architecture = 00:00 {

 filename "ipxe/undionly.kpxe";

 } else {

 filename "ipxe/ipxe.efi";

 }

uEFI HTTP:

if option client-architecture = encode-int (16, 16) {

 option vendor-class-identifier "HTTPClient";

 filename "http://101.1.1.66/ipxe/ipxe.efi";

 } else {

filename "http://101.1.1.66/boot.php";

 }

5. Extract the OS installation DVD and copy initrd.img and vmlinuz to the required http path.

6. Configure boot.php with the iPXE commands.

[root@server ~]# vim /var/www/boot.php

#!ipxe

set base http://101.1.1.66/RHEL92/

prompt -k 0x197e -t 10000 Press F12 to install RHEL9.2... || exit

:start

menu Welcome to Chelsio iPXE Boot Menu

item Install_RHEL_9_2 RHEL 9.2 Installation

choose --default Install_RHEL_9_2 --timeout 30000 target && goto ${target}

########## Menu Items #########

:Install_RHEL_9_2

kernel ${base}/images/pxeboot/vmlinuz fastboot initrd=initrd.img

inst.repo=${base}

initrd ${base}/images/pxeboot/initrd.img

boot

 goto start

The above configurations are provided for example purposes only. Update them

based on your environment. For more information, refer to the iPXE documentation

section.

Note

https://ipxe.org/docs

Unified Boot

Chelsio Unified Wire for Linux 374

9.2. Legacy iPXE TFTP Boot

Before proceeding, ensure that the Chelsio adapter on the client machine has been flashed with

the provided firmware, Option ROM, and boot configuration (Refer to the Flashing

Firmware and Option ROM section).

1. Reboot the system and go into the BIOS Boot Manager. Chelsio PXE device should be listed.

Select it and press [Enter]. If it is not listed, follow the instructions in the Legacy PXE Boot

section.

2. iPXE will start to initialize.

Unified Boot

Chelsio Unified Wire for Linux 375

3. Press F12 and the OS installation menu appears. Continue with the OS installation.

9.3. uEFI iPXE TFTP Boot

Before proceeding, Ensure that the Chelsio adapter on the client machine has been flashed with

the provided firmware, Option ROM, and boot configuration (Refer to the Flashing Firmware and

Option ROM section).

1. Reboot the system and go into the BIOS Boot Manager. uEFI: IP4 Chelsio PXE device should

be listed. Select it and press [Enter].

If it is not listed, follow the instructions in the uEFI PXE Boot section.

2. iPXE will start to initialize.

Unified Boot

Chelsio Unified Wire for Linux 376

3. Press F12 and the OS installation menu will show up. Continue with the OS installation.

9.4. uEFI iPXE HTTP Boot

Before proceeding, ensure that the Chelsio adapter on the client machine has been flashed with

the provided firmware, Option ROM, and boot configuration (Refer to the Flashing Firmware and

Option ROM section).

1. Reboot the system and go into the BIOS Boot Manager.

PCI/MAC(00:07:43:xx:xx:xx)/IPv4/Uri() device should be listed. Select it and press [Enter].

If it is not listed, follow the instructions in the uEFI PXE Boot section.

Unified Boot

Chelsio Unified Wire for Linux 377

2. iPXE will start initialize.

3. Press F12 and the OS installation menu appears. Continue with the OS installation.

Appendix

Chelsio Unified Wire for Linux 378

XXVII. Appendix

Appendix

Chelsio Unified Wire for Linux 379

 Troubleshooting

 Cannot bring up Chelsio interface

Make sure you have created the corresponding network-script configuration file as stated in

Cheslsio Unified Wire chapter (See Creating network-scripts). If the file does exist, make sure

the structure and contents are correct. A sample is given in the Chelsio Unified Wire chapter

(See Configuring network-scripts). Another reason may be that the IP address mentioned in the

configuration file is already in use on the network.

 Cannot ping through Chelsio interface

First, make sure the interface was successfully brought up using ifup ethX (where ethX is your

interface) and that it is linked to an IP address, either static or obtained through DHCP.

You then may want to check whether the destination host (i.e., the machine you are trying to ping)

is up and running and accepts ICMP requests such as ping. If you get a return value of 0 when

doing a cat /proc/sys/net/ipv4/icmp_echo_ignore_all on the remote host that means it is

configured to reply to incoming pings. Change ipv4 to ipv6 in the path if you are using IPv6. Note

that this is a Linux-only tip.

If you have more than one interface wired to the network, make sure you are using the right one

for your outgoing ping requests. This can be done by using the -I option of the ping command,

as shown in the following example:

[root@host~]# ping -I eth1 10.192.167.1

Where 10.192.167.1 is the machine you want to ping.

 Configuring firewall for your application

In many cases the firewall software on the systems may prevent the applications from working

properly. Refer to the appropriate documentation for the Linux distribution on how to configure or

disable the firewall.

 FCoE link not up

Always enable LLDP on the interfaces as FCoE link won’t come up until and unless a successful

LLDP negotiation happens.

 priority-flow-control mode on the switch

On the switch, make sure priority-flow-control mode is always set to auto and flow control is

disabled.

 Configuring Ethernet interfaces on Cisco switch

Always configure Ethernet interfaces on Cisco switch in trunk mode.

Appendix

Chelsio Unified Wire for Linux 380

 Binding VFC to MAC

If you are binding the VFC to MAC address in case of Cisco Nexus switch, then make sure you

make the Ethernet interface part of both Ethernet VLAN and FCoE VLAN.

 Cisco nexus switch reporting “pauseRateLimitErrDisable”

If in any case the switch-port on the Cisco nexus switch is reporting pauseRateLimitErrDisable”,

then perform an Ethernet port shut/no shut.

 “unexpected CM event” messages seen with iWARP traffic

One reason for this could be port number collisions. To fix this, use iWARP port mapper (iwpmd).

[root@host~]# iwpmd

 Multiple Chelsio adapters

Chelsio Option ROM supports upto 4 Chelsio adapters in a macine. In case of using more than

4 adapters, it is recommended to disable the Option ROM on the adapters.

 Ubuntu OS upgrade

With the Cheslio Unified Wire package installed, the Ubuntu OS upgrade might run into some

Debian package conflicts, because of firmware files. To avoid this,

1. Uninstall the Chelsio Unified Wire Package.

 [root@host~]# cd ChelsioUwire-x.x.x.x

 [root@host~]# make uninstall

2. Upgrade the OS.

 [root@host~]# apt-get clean

 [root@host~]# apt-get update && apt-get upgrade

3. Boot to the newly installed kernel/OS and install Chelsio Unified Wire.

 [root@host~]# reboot

 [root@host~]# cd ChelsioUwire-x.x.x.x

 [root@host~]# make install

 Installer issues

In case of any failures while running the Chelsio Unified Wire Installer, collect the below:

• install.log fille, if installed using install.py

• Entire make command output, if installed using the makefile

iWARP port mapper (iwpmd) has its own issues. Note

Appendix

Chelsio Unified Wire for Linux 381

 Logs collection

In case of any driver/firmware issues, run the below command to collect all the necessary log

files:

[root@host~]# chdebug

A compressed tar ball, chelsio_debug_logs_with_cudbg.tar.bz2 will be created with all the logs.

In case of kernel panics, the following files need to be provided for analysis:

vmcore, vmcore-dmesg.txt, vmlinux, System.map-$(uname -r), Chelsio modules

.ko files

Appendix

Chelsio Unified Wire for Linux 382

 Chelsio End-User License Agreement (EULA)

Installation and use of the driver/software implies acceptance of the terms in the Chelsio End-

User License Agreement (EULA).

IMPORTANT: PLEASE READ THIS SOFTWARE LICENSE CAREFULLY BEFORE DOWNLOADING OR OTHERWISE

USING THE SOFTWARE OR ANY ASSOCIATED DOCUMENTATION OR OTHER MATERIALS

(COLLECTIVELY, THE "SOFTWARE"). BY CLICKING ON THE "OK" OR "ACCEPT" BUTTON YOU AGREE

TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS

AGREEMENT, CLICK THE "DO NOT ACCEPT" BUTTON TO TERMINATE THE INSTALLATION PROCESS.

1. License. Chelsio Communications, Inc. ("Chelsio") hereby grants you, the Licensee,

and you hereby accept, a limited, non-exclusive, non-transferable license to install and

use the Software with one or more Chelsio network adapters on a single server computer

for use in communicating with one or more other computers over a network. You may also

make one copy of the Software in machine readable form solely for back-up purposes,

provided you reproduce Chelsio's copyright notice and any proprietary legends included

with the Software or as otherwise required by Chelsio.

2. Restrictions. This license granted hereunder does not constitute a sale of the

Software or any copy thereof. Except as expressly permitted under this Agreement, you

may not:

(i) reproduce, modify, adapt, translate, rent, lease, loan, resell, distribute, or create

derivative works of or based upon, the Software or any part thereof; or

(ii) make available the Software, or any portion thereof, in any form, on the Internet.

The Software contains trade secrets and, in order to protect them, you may not decompile,

reverse engineer, disassemble, or otherwise reduce the Software to a human-perceivable

form. You assume full responsibility for the use of the Software and agree to use the

Software legally and responsibly.

3. Ownership of Software. As Licensee, you own only the media upon which the Software

is recorded or fixed, but Chelsio retains all right, title and interest in and to the

Software and all subsequent copies of the Software, regardless of the form or media in

or on which the Software may be embedded.

4. Confidentiality. You agree to maintain the Software in confidence and not to disclose

the Software, or any information or materials related thereto, to any third party without

the express written consent of Chelsio. You further agree to take all reasonable

precautions to limit access of the Software only to those of your employees who reasonably

require such access to perform their employment obligations and who are bound by

confidentiality agreements with you.

5. Term. This license is effective in perpetuity, unless terminated earlier. You may

terminate the license at any time by destroying the Software (including the related

documentation), together with all copies or modifications in any form. Chelsio may

terminate this license, and this license shall be deemed to have automatically

terminated, if you fail to comply with any term or condition of this Agreement. Upon any

termination, including termination by you, you must destroy the Software (including the

related documentation), together with all copies or modifications in any form.

6. Limited Warranty. If Chelsio furnishes the Software to you on media, Chelsio warrants

only that the media upon which the Software is furnished will be free from defects in

Appendix

Chelsio Unified Wire for Linux 383

material or workmanship under normal use and service for a period of thirty (30) days

from the date of delivery to you.

CHELSIO DOES NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING

THE SOFTWARE OR ANY PART THEREOF. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, CHELSIO

MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, AND HEREBY DISCLAIMS ALL OTHER WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT OF THIRD PARTY RIGHTS, MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow the exclusion of implied

warranties or limitations on how long an implied warranty may last, so the above

limitations may not apply to you. This warranty gives you specific legal rights and you

may also have other rights which vary from state to state.

7. Remedy for Breach of Warranty. The sole and exclusive liability of Chelsio and its

distributors, and your sole and exclusive remedy, for a breach of the above warranty,

shall be the replacement of any media furnished by Chelsio not meeting the above limited

warranty and which is returned to Chelsio. If Chelsio or its distributor is unable to

deliver replacement media which is free from defects in materials or workmanship, you

may terminate this Agreement by returning the Software.

8. Limitation of Liability. IN NO EVENT SHALL CHELSIO HAVE ANY LIABILITY TO YOU OR ANY

THIRD PARTY FOR ANY INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO THE LICENSE

OR USE OF THE SOFTWARE, INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR LOSS OF ANTICIPATED

PROFITS, EVEN IF CHELSIO HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO

EVENT SHALL CHELSIO'S LIABILITY ARISING OUT OF OR RELATED TO THE LICENSE OR USE OF THE

SOFTWARE EXCEED THE AMOUNTS PAID BY YOU FOR THE LICENSE GRANTED HEREUNDER. THESE

LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED

REMEDY.

9. High Risk Activities. The Software is not fault-tolerant and is not designed,

manufactured or intended for use or resale as online equipment control equipment in

hazardous environments requiring fail-safe performance, such as in the operation of

nuclear facilities, aircraft navigation or communication systems, air traffic control,

direct life support machines, or weapons systems, in which the failure of the Software

could lead directly to death, personal injury, or severe physical or environmental

damage. Chelsio specifically disclaims any express or implied warranty of fitness for

any high risk uses listed above.

10. Export. You acknowledge that the Software is of U.S. origin and subject to U.S.

export jurisdiction. You acknowledge that the laws and regulations of the United States

and other countries may restrict the export and re-export of the Software. You agree

that you will not export or re-export the Software or documentation in any form in

violation of applicable United States and foreign law. You agree to comply with all

applicable international and national laws that apply to the Software, including the

U.S.

Export Administration Regulations, as well as end-user, end-use, and destination

restrictions issued by U.S. and other governments.

11. Government Restricted Rights. The Software is subject to restricted rights as

follows. If the Software is acquired under the terms of a GSA contract: use, reproduction

or disclosure is subject to the restrictions set forth in the applicable ADP Schedule

contract. If the Software is acquired under the terms of a DoD or civilian agency

contract, use, duplication or disclosure by the Government is subject to the

restrictions of this Agreement in accordance with 48 C.F.R. 12.212 of the Federal

Appendix

Chelsio Unified Wire for Linux 384

Acquisition Regulations and its successors and 49 C.F.R. 227.7202-1 of the DoD FAR

Supplement and its successors.

12. General. You acknowledge that you have read this Agreement, understand it, and that

by using the Software you agree to be bound by its terms and conditions. You further

agree that it is the complete and exclusive statement of the agreement between Chelsio

and you, and supersedes any proposal or prior agreement, oral or written, and any other

communication between Chelsio and you relating to the subject matter of this Agreement.

No additional or any different terms will be enforceable against Chelsio unless Chelsio

gives its express consent, including an express waiver of the terms of this Agreement,

in writing signed by an officer of Chelsio. This Agreement shall be governed by

California law, except as to copyright matters, which are covered by Federal law. You

hereby irrevocably submit to the personal jurisdiction of, and irrevocably waive

objection to the laying of venue (including a waiver of any argument of forum non

conveniens or other principles of like effect) in, the state and federal courts located

in Santa Clara County, California, for the purposes of any litigation undertaken in

connection with this Agreement. Should any provision of this Agreement be declared

unenforceable in any jurisdiction, then such provision shall be deemed severable from

this Agreement and shall not affect the remainder hereof. All rights in the Software not

specifically granted in this Agreement are reserved by Chelsio. You may not assign or

transfer this Agreement (by merger, operation of law or in any other manner) without

the prior written consent of Chelsio and any attempt to do so without such consent

shall be void and shall constitute a material breach of this Agreement.

Should you have any questions concerning this Agreement, you may contact Chelsio by

writing to:

Chelsio Communications, Inc.

735 N Pastoria Avenue,

Sunnyvale, CA 94085

U.S.A

